PAGES	PAGE	
APPL NO.	DATE	

CHECKED BY

PROCESSED BY

ENGINEERING DIVISION

APPLICATION PROCESSING AND CALCULATIONS

Revision Coversheet for

CARB/KVB FHC EMISSION CALC

<u>REV.</u>	DESCRIPTION/REASON for REVISION		DAT	<u>E</u>
0	Initial Release	Jan.	29 ,	1990
2	Revise for change in ROC definition	Jul.	18,	1996
3	Revise pump EF to 0.0039 due to error reading ARB VOC profile #530 and updated Table I.3 Model #2 Mixture EF to 302.83 and Model #3 Condensate EF to 0.099 to correct ARB transposition error.	Mar.	31,	1997

ENGINEERING DIVISION

APPL NO. DATE

APPLICATION PROCESSING AND CALCULATIONS

PROCESSED BY CHECKED BY

FUGITIVE HYDROCARBON CALCULATIONS - CARB/KVB METHOD

Fugitive Hydrocarbon (FHC) Emission Calculation Worksheets

- I. Valves and Fittings
- II. Sumps and Well Cellars
- III. Oil/Water Separators
- IV. Pumps, Compressors, and Well Heads
- V. Enhanced Oil Recovery Fields
- VI. FHC Emission Summary Sheet

PTO Number:	 Attachment	<pre>Item:</pre>
Facility Name:		
raciffey name.		
Calculations By:		
Date:		
Comments:		

ENGINEERING	DIVISION

APPL NO. DATE

APPLICATION PROCESSING AND CALCULATIONS

PROCESSED BY CHECKED BY

(wells)

I. Valves and Fittings

1.	Number	of act	tive (not		
aban	doned)	wells a	at facility.	1.	

4. Calculate the facility gas to oil ratio.

Line 2 / Line 3 =
$$4.$$
_____ (SCF/bbl)

5. Refer to TABLE I.1 and choose the corresponding facility model number based on lines 1 and 4 above.

6. <u>Valve Emission Factors</u>: Refer to TABLE I.2 and write down below the emission factors corresponding to the facility model number (line 5).

$(lb ROC/day-well) (10)^{-4}$

7. Sum lines 6.1 through 6.4 to obtain composite valve emission factor

(lb ROC/day-well)
$$(10)^{-4}$$
.

Lines
$$6.1 + 6.2 + 6.3 + 6.4 = 7.$$

DATE

ENGINEERING	$D \pm t \cdot t + O \pm O$	N T
H: IVI(= 1 IVI H: H: H: K IVI(=		IVI

APPL NO.

APPLICATION PROCESSING AND CALCULATIONS

PROCESSED BY

CHECKED BY

8. <u>Fitting Emission Factors</u>:
Refer to TABLE I.3 and write down below the emission factors corresponding to the facility model number (line 5).

(lb ROC/day-well) $(10)^{-4}$

- 8.1 Gas _____
- 8.2 Liquid _____
- 8.3 Mixture _____
- 8.4 Condensate
- 9. Sum lines 8.1 through 8.4 to obtain composite fitting emission factor (lb ROC/day-well) $(10)^{-4}$.

Lines 8.1 + 8.2 + 8.3 + 8.4 = 9.

10. Sum lines 7 and 9 above to obtain the facility composite valve and fitting FHC emission factor (lb ROC/day-well) $(10)^{-4}$.

Line 7 + Line 9 =

10.____

11. Calculate the total daily facility valve and fitting FHC emissions.

Line 10 * Line 1 / 10,000 =

11.____

ROC (lb/day)

12. Calculate hourly valve and

ENGINEERING DIVISION

APPL NO. DATE

APPLICATION PROCESSING AND CALCULATIONS

PROCESSED BY

CHECKED BY

fitting FHC emissions.

Line 11 / 24 hours per day = 12._____

ROC (lb/hr)

13. Calculate yearly valve and fitting FHC emissions.

Line 11 * (365 days/year) /

(2000 lbs/ton) = 13.____

ROC (tons/yr)

PAGES	PAGE
-------	------

ENGINEERING DIVISION

APPL NO.

DATE

APPLICATION PROCESSING AND CALCULATIONS

PROCESSED BY CHECKED BY

TABLE I.1

FACILITY MODEL NUMBERS

- Model #1: Number of wells on the lease is less than 10 and the GOR is less than 500.
- Model #2: Number of wells on the lease is between 10 and 50 and the GOR is less than 500.
- Model #3: Number of wells on the lease is greater than 50 and the GOR is less than 500.
- Model #4: Number of wells on the lease is less than 10 and the GOR is greater than or equal to 500.
- Model #5: Number of wells on the lease is between 10 and 50 and the GOR is greater than or equal to 500.
- Model #6: Number of wells on the lease is greater than 50 and the GOR is greater than or equal to 500.

ENGINEERING DIVISION

APPL NO.

DATE

APPLICATION PROCESSING AND CALCULATIONS

PROCESSED BY CHECKED BY

TABLE I.2

VALVE EMISSION FACTORS

Lease Model	<u>Service</u>	ROC Emission Factor (lb/day-well)*10 ⁻⁴
Model #1	Gas Liquid Mixture Condensate	14171.700 0.982 748.355 0.000
Model #2	Gas Liquid Mixture Condensate	6807.460 0.971 190.993 0.000
Model #3	Gas Liquid Mixture Condensate	62.177 0.260 154.327 0.000
Model #4	Gas Liquid Mixture Condensate	44784.900 1.215 303.513 0.000
Model #5	Gas Liquid Mixture Condensate	8293.500 0.509 344.359 0.000
Model #6	Gas Liquid Mixture Condensate	16839.200 0.084 239.978 0.000

ENGINEERING DIVISION

APPL NO.

DATE

APPLICATION PROCESSING AND CALCULATIONS

PROCESSED BY CHECKED BY

TABLE I.3

FITTING EMISSION FACTORS

Lease Model	<u>Service</u>	ROC Emission Factor (lb/day-well)*10 ⁻⁴
Model #1	Gas Liquid Mixture Condensate	8483.620 323.495 1139.750 0.000
Model #2	Gas Liquid Mixture Condensate	5788.960 0.000 302.830 0.000
Model #3	Gas Liquid Mixture Condensate	166.743 9.719 496.834 0.099
Model #4	Gas Liquid Mixture Condensate	20399.100 0.001 920.142 0.000
Model #5	Gas Liquid Mixture Condensate	17547.300 29.052 1847.850 0.000
Model #6	Gas Liquid Mixture Condensate	24890.200 0.000 115.139 0.243

ENGINEERING DIVISION

APPL NO. DATE

APPLICATION PROCESSING AND CALCULATIONS

PROCESSED BY CHECKED BY

II. Sumps, Waste Water Tanks, and Well Cellars

Section 1.0	Facility	Equipment	Description	and	List
-------------	----------	-----------	-------------	-----	------

1.1	Sumps, Uncovered Waste Water Tanks and Well Cellars in Light Crude Service Sump/Well Cellar Surface Area Versus Type (ft²)					
	Description/Name	Primary	Secondary	Tertiary	Well Cellars	
					·	
Cell	al Facility Sump/Well ar Surface Areas (Sum column lines) (ft²)	Α	_ в	C	D	
1.2	Sumps, Uncovered Wast Crude Service	Sump/We	ell Cellar Su:	rface Area	eavy	
	Description/Name		<u>Versus Type (</u> Secondary		Well Cellars	
					·	
					·	

ENGINEERING DIVISION			APPL NO.	DATE
APPLICATION PROCESSING AND	CALCULATION	S	PROCESSED BY	CHECKED BY
Total Facility Sump/Well Cellar Surface Areas (Sum all column lines) (ft²)	Е.	F.	G.	н

ENGINEERING DIVISION APPL NO. DATE APPLICATION PROCESSING AND CALCULATIONS PROCESSED BY CHECKED BY 1.3 Covered Waste Water Tanks in Light Crude Service Waste Water Tank Surface Area Versus Type (ft²) Description/Name Primary Secondary Tertiary

Total Covered Waste Water	<u> </u>			
Tank Surface Areas (Sum				
all column lines) (ft²)	I.	J.	К.	

1.4 Covered Waste Water Tanks in Heavy Crude Service

		Water Tank Sur Versus Type (f	
Description/Name	Primary	Secondary	Tertiary

ENGINEERING DIVISION		APPL NO.	DATE
ADDITCAMION DDOCECCING AND	CAT CIII A MITONIC		
APPLICATION PROCESSING AND	CALCULATIONS	PROCESSED BY	CHECKED BY
all column lines) (ft ²)			
all column lines, (10)	T M	N	
	ш• ти•	IN •	

ENGINEERING DIVISION APPL NO. DATE APPLICATION PROCESSING AND CALCULATIONS PROCESSED BY CHECKED BY 1.5 Waste Water Tanks Equipped with Vapor Recovery (VR) in Light Crude Service Waste Water Tank Surface Area Versus Type (ft²) Description/Name Primary Secondary Tertiary Total VR Equipped Waste Water Tank Surface Areas O. P. Q. (Sum all column lines) (ft^2) 1.6 Waste Water Tanks Equipped with Vapor Recovery (VR) in Heavy Crude Service Waste Water Tank Surface Area Versus Type (ft²) Description/Name Primary Secondary Tertiary

Total VR Equipped Waste Water Tank Surface Areas

ENGINEERING DIVISION		APPL NO.	DATE
APPLICATION PROCESSING AND	CALCULATIONS	PROCESSED BY	CHECKED BY
(Sum all column lines)			
(ft^2)	R S	T	

ENGINEERING DIVISION

APPL NO. DATE

APPLICATION PROCESSING AND CALCULATIONS

PROCESSED BY CHECKED BY

Section 2.0 Calculations

- 2.1 Sumps, Uncovered Waste Water Tanks, and Well Cellars in Light Crude Service
 - 1. Primary Sump Emissions

2. Secondary Sump Emissions

Line B * 0.018 (lb ROC/ft2-day) =
$$\frac{1}{2}$$

3. Tertiary Sump Emissions

Line C *
$$0.0087$$
 (lb ROC/ft2-day) =

4. Well Cellar Emissions

Line D * 0.138 (lb ROC/ft2-day) =
$$\frac{1}{2}$$

- 2.2 Sumps and Well Cellars in Heavy Crude Service
 - 5. Primary Sump Emissions

Line E *
$$0.094$$
 (lb ROC/ft2-day) =

6. Secondary Sump Emissions

7. Tertiary Sump Emissions

Line G *
$$0.0058$$
 (lb ROC/ft2-day) =

8. Well Cellar Emissions

ENGINEERING DIVISION

APPL NO. DATE

APPLICATION PROCESSING AND CALCULATIONS

PROCESSED BY

CHECKED BY

Line H *
$$0.094$$
 (lb ROC/ft2-day) =

8._____ ROC (lb/day)

2.3 Covered Waste Water Tanks in Light Crude Service

9. Primary Type Emissions

Line I *
$$0.138$$
 (lb ROC/ft2-day) =

9._____ ROC (lb/day)

10. Secondary Type Emissions

Line J * 0.018 (lb ROC/ft2-day) =
$$\frac{1}{2}$$

10.____ ROC

(lb/day)

11. Tertiary Type Emissions

Line K *
$$0.0087$$
 (lb ROC/ft2-day) =

ROC (lb/day)

12. Total covered waste water tank emissions in light crude service.

$$Line(9 + 10 + 11) * (1-0.85) = 12.$$

12._____ ROC (lb/day)

2.4 Covered Waste Water Tanks in Heavy Crude Service

13. Primary Type Emissions

Line L *
$$0.094(lb ROC/ft2-day) =$$

13._____ ROC (lb/day)

14. Secondary Type Emissions

Line M *
$$0.0126$$
 (lb ROC/ft2-day) =

14._____ ROC (lb/day)

15. Tertiary Type Emissions

Line N *
$$0.0058$$
 (lb ROC/ft2-day) =

15.____ ROC (lb/day)

16. Total covered waste water tank

ENGINEERING DIVISION

APPL NO.

DATE

APPLICATION	PROCESSING	AND	CALCULATIONS

PROCESSED BY

CHECKED BY

emissions in heavy crude service.

Lines
$$(13 + 14 + 15) * (1-0.85) = 16.$$
_____ ROC

(lb/day)

- 2.5 Waste Water Tanks Equipped with Vapor Recovery in Light Crude Service
 - 17. Primary Type Emissions

Line 0 * 0.138 (lb ROC/ft2-day) =
$$17._{---}$$
 ROC

(lb/day)

18. Secondary Type Emissions

Line P * 0.018 (lb ROC/ft2-day) =
$$\frac{1}{2}$$

18.____ ROC (lb/day)

19. Tertiary Type Emissions

Line Q * 0.0087 (lb ROC/ft2-day) =
$$19.$$
_____ ROC

(lb/day)

20. Total VR equipped waste water tank emissions in light crude service.

Line
$$(17 + 18 + 19) * (1-0.95) = 20.$$
 ROC

(lb/dav)

- 2.6 Waste Water Tanks Equipped with Vapor Recovery in Heavy Crude Service
 - 21. Primary Type Emissions

Line R *
$$0.094$$
 (lb ROC/ft2-day) =

21.____ ROC (lb/day)

22. Secondary Type Emissions

Line S *
$$0.0126$$
 (lb ROC/ft2-day) =

22.____ ROC (lb/day)

Tertiary Type Emissions 23.

ENGINEERING DIVISION

APPL NO. DATE

APPLICATION PROCESSING AND CALCULATIONS

PROCESSED BY CHECKED BY

Line T * 0.0058 (lb ROC/ft2-day) =

23._____ ROC (lb/day)

24. Total covered waste water tank emissions in heavy crude service.

Lines
$$(21 + 22 + 23) * (1-0.95) = 24.$$
 ROC

24._____ ROC (lb/day)

ENGINEERING DIVISION

APPL NO. DATE

APPLICATION PROCESSING AND CALCULATIONS

PROCESSED BY CHECKED BY

- 2.7 Sump, Waste Water Tank and Well Cellar FHC Emissions Summary
 - 25. Total daily sump, waste water tank, and well cellar FHC emissions.

(Sum Lines 1 to 8 above + Lines 12 + 16 25._____ ROC + 20 + 24) = (1b/day)

26. Total hourly sump, waste water tank, and well cellar FHC emissions.

Line 25 / 24 (hr/day) = 26._____ ROC (lb/hr)

27. Total yearly sump, waste water tank, and well cellar FHC emissions.

Line 25 * 365 (days/yr)

/ 2000 (lb/ton) = 27.____ ROC (tons/yr)

ENGINEERING	DIVISION

APPL NO. DATE

	APPLICATION	PROCESSING	AND	CALCULATIONS
--	-------------	------------	-----	--------------

PROCESSED BY CHECKED BY

III. Oil/Water Separators

Section 1.0 Equipment Listing

			Separator T Throughput (
	Description/Name	Equipped with Cover	Equipped with Vapor Recovery	Open Top	
type	l throughput for each of oil/water rator (MM Gals/day)	A	В	C	
Secti	ion 2.0 Calculations				
1.	Covered oil/water separations.	arator FHC			
	Line A * 560 (lb ROC/N	MM gal) * (0	.15) = 1		ROC (lb/day)
2.	Oil/water separators erecovery.	equipped wit	h vapor		(ID/day)
	Line B * 560 (lb ROC/N	MM gal) * (0	.05) = 2		ROC (lb/day)
3.	Open top oil/water sep	parators.			(ID/day)
	Line C * 560 (lb ROC/N	MM gal) =	3		ROC

ENGINEERING DIVISION

APPL NO. DATE

APPLICATION PROCESSING AND CALCULATIONS

PROCESSED BY CHECKED BY

(lb/day)

4. Total oil/water separator FHC emissions.

Lines 1 + 2 + 3 =

4._____ ROC (lb/day)

5. Hourly oil/water separator FHC emissions.

Line 4 / 24 (hrs/day) =

5.____ ROC (lb/hr)

6. Yearly oil/water separator FHC emissions.

Line 4 * 365 (days/yr) / 2000 (lb/ton) = 6.____ ROC (tons/yr)

ENGINEERING DIVISION

APPL NO. DATE

APPLICATION PROCESSING AND CALCULATIONS

PROCESSED BY CHECKED BY

Section 1.0 Calculations

2. Calculate well head emissions.

Line 1 * 0.0097 (lb ROC/day-well) = 2._____ ROC (lb/day)

3. Calculate pump FHC emissions if facility is equipped with motor driven pumps.

Line 1 * 0.0039 (lb ROC/day-well) = 3._____ ROC (lb/day)

4. Calculate compressor FHC emissions if facility is equipped with motor driven compressors.

Line 1 * 0.068 (lb ROC/day-well) = 4._____ ROC (lb/day)

5. Total daily facility well head, pump and compressor FHC emissions.

Lines 2 + 3 + 4 = 5. ROC (lb/day)

6. Hourly facility well head, pump and compressor FHC emissions.

Line 5 / 24 (hrs/day) = 6._____ ROC (lb/hr)

7. Annual facility well head, pump and compressor FHC emissions.

Line 5 * 365 (days/yr) / 2000 (lb/ton) = 7._____ ROC (tons/yr)

ENGINEERING DIVISION

APPL NO. DATE

APPLICATION PROCESSING AND CALCULATIONS

PROCESSED BY CHECKED BY

V. Enhanced Oil Recovery Fields

Section 1.0 Quantities of Enhanced Oil Wells

<u>Units</u>

- Total number of Steam Drive wells with controlled well vents.
- 1.____ (wells)
- 2. Total number of Steam Drive wells with uncontrolled well vents.
- 2.____ (wells)
- 3. Total number of Cyclic Steam well with controlled well vents.
- 3. (wells)
- 4. Total number of Cyclic Steam wells with uncontrolled well vents.
- 4. (wells)

Section 2.0 Calculations

5. Total FHC emissions from controlled Steam Drive wells.

Line 1 * 9.890 (lb ROC/well-day) =

5.____ ROC (lb/day)

6. Total FHC emissions from uncontrolled Steam Drive wells.

Line 2 * 201 (lb ROC/well-day) =

6._____ ROC (lb/day)

7. Total FHC emissions from controlled Cyclic Steam wells.

Line 3 * 3.315 (lb ROC/well-day) =

7._____ ROC (lb/day)

8. Total FHC emissions from uncontrolled Cyclic Steam wells.

Line 4 \star 3.6 (lb ROC/well-day) =

8._____ ROC (lb/day)

ENGINEERING DIVISION

APPL NO. DATE

APPLICATION PROCESSING AND CALCULATIONS

PROCESSED BY CHECKED BY

9. Total daily enhanced oil recovery FHC emissions.

Lines
$$5 + 6 + 7 + 8 =$$

10. Total hourly enhanced oil recovery FHC emissions.

Line
$$9 / 24 (hr/day) =$$

11. Totaly yearly enhanced oil recovery FHC emissions.

		PAGES	PAGE	
	ENGINEERING DIVISION	APPL NO.	DATE	
APPI	LICATION PROCESSING AND CALCULATIONS	PROCESSED BY	CHECKED BY	
VI.	FHC Emission Calculation Summary Sheet			
PTO	Number: Facility Name:		Commen	ts:
			ROC Emi	ssions
	Worksheet Data Location		(lb/hour)	<pre>(tons/year)</pre>
Α.	<u>Section I</u> : Total FHC Emissions from Valand Fittings	ves		
1.	Values from Section I Worksheets:		Line 12:	Line 13:
В.	<u>Section II</u> : Total FHC Emissions from Sand Well Cellars	Sumps		
2.	Values from Section II Worksheets:		Line 26:	Line 27:
С.	<u>Section III</u> : Total FHC Emissions from Oil/Water Separators			
3.	Values from Section III Worksheets:		Line 5:	Line 6:
D.	<u>Section IV</u> : Total FHC Emissions from F Compressors, and Well Heads	oumps,		
4.	Values from Section IV Worksheets:		Line 6:	Line 7:
Ε.	<u>Section V</u> : Total FHC Emissions from Er Oil Recovery Fields	nhanced		
5.	Values from Section V Worksheets:		Line 10:	Line 11:

	PAGES	PAGE
ENGINEERING DIVISION	APPL NO.	DATE
APPLICATION PROCESSING AND CALCULATIONS	PROCESSED BY	CHECKED BY

Total Facility FHC Emissions:

Lines 1 + 2 + 3 + 4 + 5 (each column) =