

Vessel Speed Reduction Lowers Emissions

Research funded by US EPA and California Air Resources Board

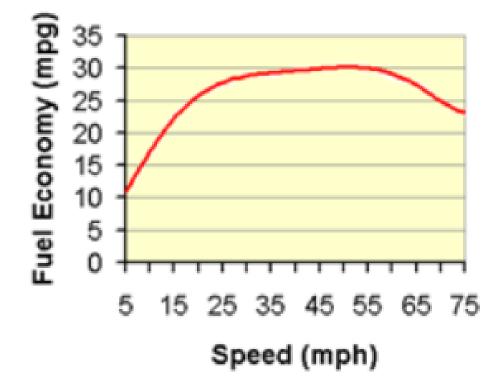
Protecting Blue Whales and Blue Skies Community Forum Wednesday, September 10, 2014 3-5 PM Cabrillo Pavilion Arts Center, 1118 E. Cabrillo Blvd Santa Barbra, CA 93103

Discussion Topics

Photo: (John Calambokidis / Cascadia Research)

Greenhouse Gas and Criteria Emission Benefits through Reduction of Vessel Speed at Sea

(Khan et. al. Environ. Sci. Technol. 2012, 46, 12600-12607)


UCR Marine Experience

Ocean Going Vessels: main engines Feb 04 Container Ship I Oct 06 Container Ship IV Feb 07 Oil tanker July 07 Container Ship I Sept 07 Container Ship IV Sept 08 Container Ship IV Jun 09 Container Ship IV Aug 09 Container Ship IV Apr 10 Container Ship V Sept 10 Container Ship VI (Tier1) Ocean Going Vessels: auxiliary engines Feb 04 Container Ship I May 05 Container Ship II July 05 Container Ship II Oct 05 Container Ship II Dec 05 Container Ship II Dec 05 Container Ship III Container Mar 06 Ship IT

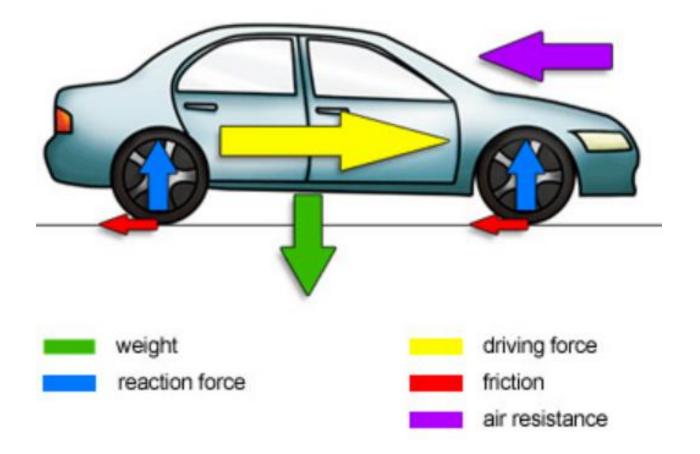
Oct 06 Container Ship IV Nov 06 RORO Feb 07 Oil tanker Apr 10 Container Ship V Ocean Going Vessels: auxiliary boiler Feb 07 Oil tanker Sept 07 Container ship IV Harbor Craft: main & auxiliary engines Mar 06 Ferry exhaust control Jun 06 Shuttle: Biodiesel Aug 06 Activity studies Sept 06 Dredger: engine control Oct 06 Dredger: exhaust control Oct 08 Workboat: T2 & biodiesel Feb 09 Ferry: T2 & biodiesel -Sept 09 AZ Shuttle: T2 & biodiesel Oct 10 First hybrid tug Sept 11 Great Lakes vessel + algal fuel Dec 11 Retrofit tug

Fuel Economy Decreases at High Speed

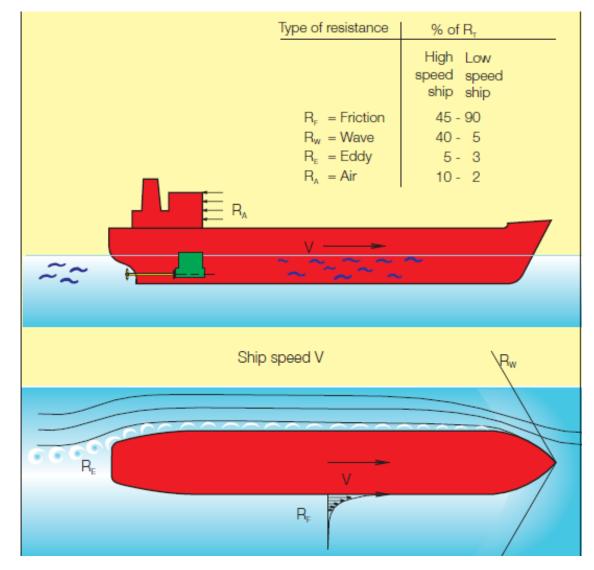
Ref. US Dept of Energy

- How much?
 3% @ 60mph
 - 17% @ 70mph
 - 28% @ 80mph

Consumer Report on Faster Speeds


Make & model	55 mph	65 mph	75 mph
Acura TSX 2.4-liter 4-cyl.	39.9 mpg	35.5 mpg	30.7 mpg
Honda Insight 1.3-liter 4-cyl.	51.9	44.8	36.5
Lexus RX350 3.5-liter V6	30.9	27.4	23.0
Mercury Mountaineer 4.6-liter V8	23.8	21.2	17.8
Toyota Camry 2.5-liter 4-cyl.	40.3	34.9	29.8
Toyota RAV4 2.5 liter 4-cyl.	34.6	29.3	25.9
Toyota Yaris 1.5-liter 4-cyl.	42.5	37.9	34.0

6

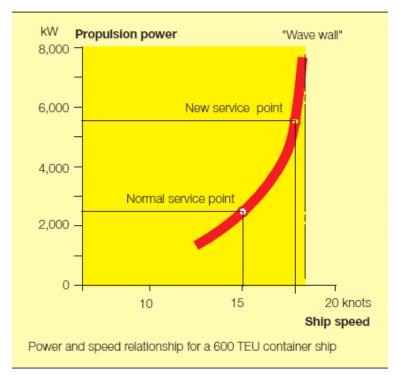

Forces on a Vehicle

Forces on a Ship

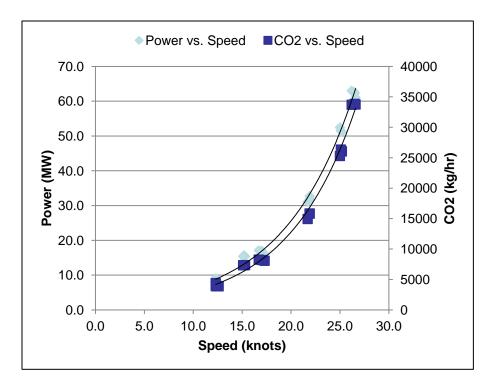
Reference: Appendix E from MANN B&W Technical Report, Basic Principles of Ship Propulsion

Ship Emission Measurement Project

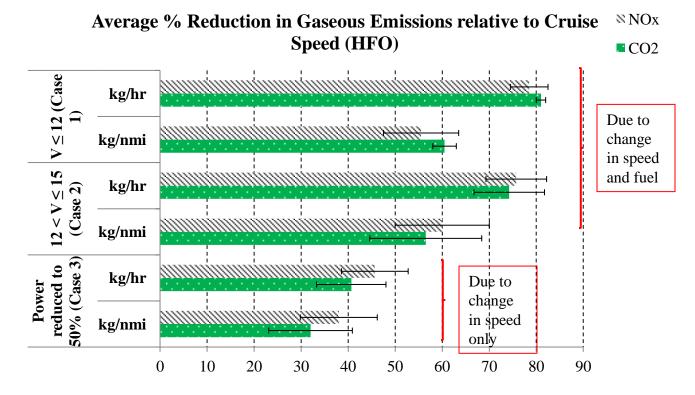
- Two container ships; typical in CA water
 Panamax: 1997; 36.7MW; 4,062 TEUs
 - Post Panamax: 2010; 68.5kW; 8,501 TEUs
- Two fuels: HFO & MGO
- Emissions measured at certification test loads using ISO & US EPA methods.
- Analysis explored scenarios to reduce criteria pollution & green house gases


Test Plan

Vessel	Engine	VSR measurements	Fuel	Engine Load (%)	Vesse Speed	Gaseous/PM/EC- OC Measurements
1	Sulzer 9RTA84C	Out of Long Beach Port	MGO	11	11	Yes/Yes/Yes
			MGC	21	15	Yes/Yes/Yes
		Into Oakland Port	HFC	10	12	Yes/Yes/Yes
1	Sulzer 9RTA84C	Out of Long Beach Port	MGO	9	13	Yes/No/No
			MGO	18	14	Yes/Yes/No
		Into Oakland Port	MGO	17	14	Yes/No/No
2	Hyundai B&W 11K 98ME7	Out of Long Beach Port	MGO	9	12	Yes/No/No
		Into Oakland Port	MGO	12	12	Yes/Yes/Yes
			MGO	23	15	Yes/Yes/Yes

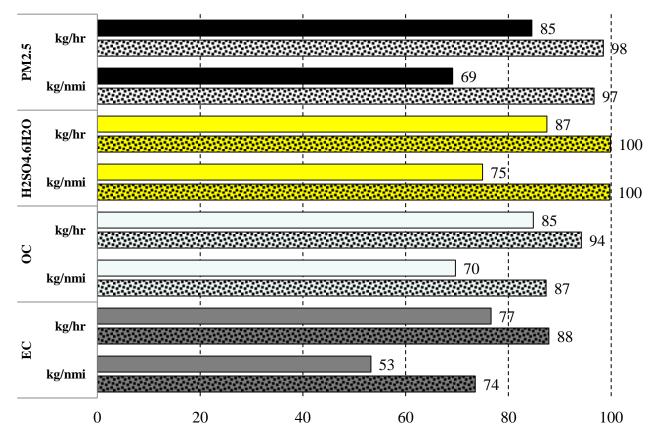


Theory vs. Data



(Ref: : Appendix E from MANN B&W Technical Report, *Basic Principles of Ship Propulsion*

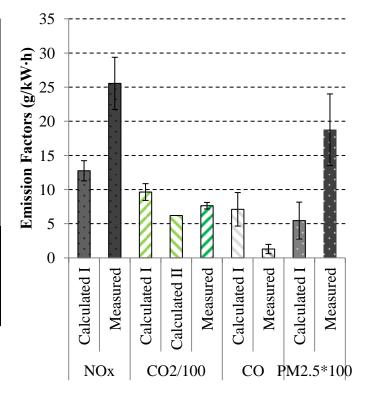
Results: NOx & CO₂ Emission Benefits


On a REGIONAL scale: VSR to 12 knots yielded approx. 61% and 56% reduction in CO_2 & NOx

On a GLOBAL scale: On average, CO_2 & NOx reduced to 32% and 38%, respectively by merely reducing speed of the vessel by 3-6 knots

Results: PM_{2.5} Emissions Benefits

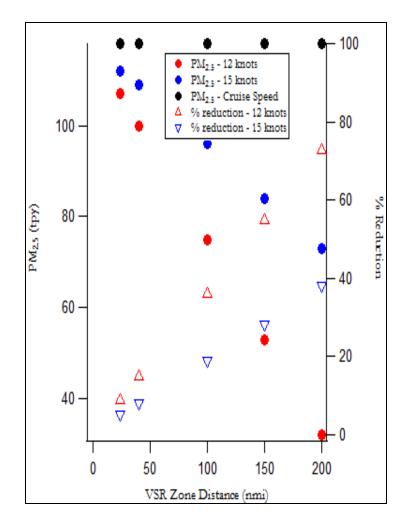
% Reduction in Particulate Mass relative to Cruise Speed (HFO)


- Up to 70% PM_{2.5} reduction; reduction improved to 97% when fuel was switched from HFO to MGO
- Significant reduction in EC, OC and hydrated sulfate was also found

Measured vs. EPA/CARB EFs at Loads $\leq 20\%$

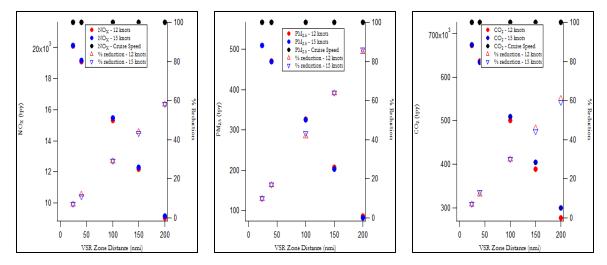
- Regulatory Agencies relies upon a formula developed by EEIA to estimate EFs at low loads
- y (g/kW-hr) = a (fractional load)^{-x} + b
- Where *fractional load* = (actual speed/max. speed)³

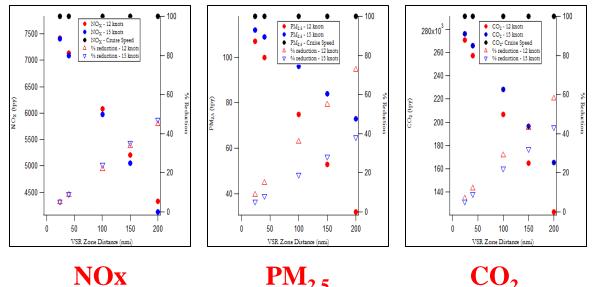
pollutant	exponent (x)	intercept (b)	coefficient (a)						
NOx	1.5	10.4496	0.1255						
$PM_{2.5}$	1.5	0.2551	0.0059						
CO_2	1	648.6	44.1						
СО	1	0.1458	0.8378						



Calculated I: EPA method; Calculated II: CARB method

- On average, EPA and CARB **underestimates** $PM_{2.5}$ and NOx by 72% and 51%, respectively, and overestimates CO by 669%
- In case of CO₂, EPA **overestimates** by 20% and CARB **underestimates** by 20%


Effect of Controlling Regulated Boundary


 $TPE_{PM2.5}$ reduction almost doubled on reducing large vessel speed from 15 knots (5-38%) to 12 knots (9-73%)

Effect of Controlling Regulated Boundary (small and medium sized engines)

Effect of Controlling Regulated Boundary (large engines)

PM_{2.5}

CO,

Summary

- Both criteria pollutants and greenhouse gases are reduced with VSR.
- Both global and regional emissions are important.
- References
 - CARB: robert.krieger@arb.ca.gov
 - UCR: wayne.miller@ucr.edu

Thank You & Questions

Photo: (John Calambokidis / Cascadia Research)