Our Vision 👋 Clean Air

ONSHORE OIL AND GAS PRODUCTION FLARE REACTIVE ORGANIC COMPOUND EMISSION FACTOR STUDY

<u>Prepared by</u> William Sarraf Kevin Brown

Santa Barbara County Air Pollution Control District Engineering Division February 2016

Aeron Arlin Genet • Air Pollution Control Officer 260 North San Antonio Road, Suite A • Santa Barbara, CA • 93110 • 805.961.8800 OurAir.org • twitter.com/OurAirSBC

Table of Contents

I.	EXEC	TUTIVE SUMMARY	. 1
	A.	Introduction	.1
	B.	Background	. 1
	C.	Recommendation	1
II.	OVER	VIEW	. 2
	A.	Oil and Gas Production Flare Background.	2
	B.	EPA Flare Study- 1983.	. 2
	C.	District Emission Factor Guidance Document- 2007	. 2
	D.	EPA Flare Study- 2015.	. 2
	E.	District Flare Studies- 1991 and 2015	3
III.	METH	IODOLOGY	.5
	A.	Introduction	.5
	B.	Assumptions	.5
	C.	Study Criteria	. 5
	D.	Flares Used in Flare	.7
	E.	Flare Data	.7
	F.	Relevant Equations and Calculations	8
IV.	RESU	LTS	. 10
	A.	Facility Emission Factors	.10
	В.	County-Wide Emission Factor	.10
V.	DATA	ANALYSIS AND VALIDATION	. 11
VI.	CONC	CLUSIONS	.13
VII.	REFE	RENCES	.14

Tables and Figures

TABLE 1: FLARES MEETING STUDY CRITERIATABLE 2: STUDY FLARESTABLE 3: FACILITY EMISSION FACTORS	6 7 10
FIGURE 1: SAMPLE GAS ANALYSIS REPORT	8
FIGURE 2: FACILITY DATA STANDARD DEVIATION DISTRIBUTION	11
EQUATION 1: TOTAL MOLECULAR WEIGHT OF GAS ROC	8
EQUATION 2: ROC MASS PER SCF OF FLARE GAS	9
EQUATION 5: FLARE ROC EMISSION FACTOR	9
EQUATION 5: COUNTY WIDE EMISSION ROC FACTOR.	9

Appendices

- Appendix A: BE Conway Energy Enos Lease Data
- Appendix B: BE Conway Energy Union Sugar Lease Data
- Appendix C: ERG Resources Williams Holding Lease Data
- Appendix D: Greka Oil and Gas Bradley Lands/Bradley Consolidated Lease Data
- Appendix E: Greka Oil and Gas Morganti Lease Data
- Appendix F: PRE Resources Careaga #1 Lease Data
- Appendix G: Sierra Resources Barham/Boyne Lease Data
- Appendix H: Sierra Resources Blair Lease (1) Data
- Appendix I: Sierra Resources Blair Lease (2) Data

Abbreviations/Acronyms

aFTIR	Active Fourier Transform Infrared Spectroscopy
AP-42	USEPA Compilation of Emission Factors Document
ASTM	American Society for Testing and Materials
Btu	British Thermal Unit
CFR	Code of Federal Regulations
CO	Carbon Monoxide
CO_2	Carbon Dioxide
DIAL	Differential Infrared Absorption LIDAR (Light Detection and Ranging)
District	Air Pollution Control District
HAP	Hazardous Air Pollutants
lb	Pound
MM, mm	Million
OCS	Outer Continental Shelf
pFTIR	Passive Fourier Transform Infrared Spectroscopy
ROC	Reactive Organic Compound
scf	Standard Cubic Feet
USEPA	United States Environmental Protection Agency or EPA
VOC	Volatile Organic Compounds

I. EXECUTIVE SUMMARY

A. Introduction

In April 2015, the United States Environmental Protection Agency (USEPA) finalized new AP-42 flare emission factors. These revised emission factors applied to any flare system (regardless if unassisted, air assisted, or steam assisted) that is not an enclosed thermal oxidizer or low NO_x design. Per the new AP-42 guidelines, the CO emission factor decreased to 0.310 lb/MMBtu from the existing 0.370 lb/MMBtu factor. The ROC emission factor increased to 0.570 lb/MMBtu from the previous factor of 0.0861 lb/MMBtu.

B. Background

Members of the Santa Barbara County oil and gas industry as well as environmental consultants expressed concern regarding the dramatic increase in the flare ROC potential-to-emit due to the revised emission factor. It is believed that the revised ROC emission factor was not representative of flares at Santa Barbara County's onshore oil and gas production facilities. Following a review of the AP-42 document, the District determined that the EPA flare study was primarily applicable to oil refineries and chemical manufacturing facilities. Therefore, the new emission factor was not representative of Santa Barbara County's oil and gas production facility flares. The District's Engineering Division concluded that determining a new, countywide production flare ROC emission factor would lead to more accurate potential-to-emit calculations from oil and gas production facilities.

C. Recommendation

The Engineering Division recommends that a ROC emission factor of **0.200 lb/MMBtu** be used to calculate ROC potential-to-emit for all onshore oil and gas production flares meeting the criteria of this study. Analysis of the data showed no outliers in the dataset. All individual facility emission factors fall within two standard deviations of the proposed emission factor. The District considers this emission factor to be representative of production flare ROC emissions at onshore oil and gas production facilities within Santa Barbara County.

II. OVERVIEW

A. Onshore Oil and Gas Production Flare Background

After well drilling operations have ceased, oil and gas production facilities begin to extract an emulsion composed primarily of water, crude petroleum and natural gas. As the emulsion passes through a production facility, the various components are separated. Produced gas recovered from the emulsion is typically sold, reinjected into the wells, or destroyed in a combustion process. In addition, process issues and pressure upsets at the facility may require venting of the produced gas, which must be combusted before its release to the atmosphere, as a safety measure.

In order to operate an oil and gas production flare, a series of headers are installed throughout the facility which feed into the flare system. As the produced gas enters a flare, the reactive content of the gas is combusted and converted to non-reactive waste products: CO, CO_2 , and water vapor. Although flare combustion is designed to be highly efficient, a small fraction of the produced gas will inadvertently pass through the flare as un-combusted emissions. Additionally, due to variations in operating parameters, including outside factors such as humidity, temperature, wind speeds, turbulence of the gas, and the instantaneous quality of the gas being burned, flare ROC emissions naturally vary over time.

B. EPA Flare Study- 1983

In 1983, the EPA, in conjunction with Chemical Manufacturers Association, The John Zink Company, and Engineering Science Inc., conducted a full scale experimental study to determine flare operational characteristics which led to a stable flame and good combustion efficiencies. A suspended sample probe located in the flare plume was used to obtain direct emissions data. The report concluded that combustion efficiencies of 98 percent (mass basis) were achievable. Furthermore, the EPA established working parameters for flare operations that have been incorporated into the technology based standards of District Rule 359.

C. District Emission Factor Guidance Document- 2007

A 2012 report prepared by the EPA Office of Air Quality Planning and Standards combined data from several experimental flare efficiency studies. The report was comprised of data sets from ten independent studies conducted between July 1983 and August 2011. Each of the studies focused entirely on refinery flares, chemical plant flares, or industrial flares using either extractive or remote sensing test methods such as pFTIR or aFTIR to collect emissions data. Using extrapolated data, the report concluded that a 96.5 percent combustion efficiency demonstrates good flare performance which translates to a 98 percent destruction efficiency (mass basis).

D. EPA Flare Study- 2015

As a result of a May 2013 lawsuit related to Section 130 of the Clean Air Act, the EPA conducted an extensive study of refinery and manufacturing plants in an attempt to update emission factors for various operational units including flares. Using multiple direct emission test reports and data from a DIAL study conducted in the Houston area, the EPA compiled seven emission test reports from ten flares and developed an updated ROC emission factor of 0.570 lb/MMBtu. After reviewing the updated figure and available background data, the District had several concerns with the applicability of the new flare emission factor.

- 1. The study used data collected from refinery flares, whereas flares operated in Santa Barbara County are typically production flares. The nature of a refinery operations lends itself to flaring gas products with large fluctuations in heat content. At any given moment, off gasses collected from multiple vessels may be combusted in a refinery flare. The variation in combustion characteristics can be observed in the EPA study's background documentation. Several of the tests showed unstable Btu content indicated by large standard deviation swings in the data. By comparison, the gases sent to production flares in Santa Barbara County have a stable Btu content extended over multiple years of operations.
- 2. Test results found in study's background data show large differences in the reactive content of the inlet gas with multiple data points exceeding 90 percent reactive content and standard deviations as high as 23 percent. Field gas burned in Santa Barbara County has much lower and stable reactive content, typically on the order of 10 percent, with a relatively consistent composition.
- 3. Refinery flares have a greater tendency to smoke due to the flared gases' higher molecular weights. Due to these operational considerations, refinery flares typically are assisted by air or steam. All of the flares used in the EPA's study were assisted, thereby diluting the highly variable, and in some cases low, inlet Btu content further. A heat content less than 300 Btu/scf of gas would not be in compliance with the General Provisions of 40 CFR Part 60 and the flare likely would not meet a destruction efficiency of 98 percent (mass basis). Assisted flares also present operational problems when handling highly variable gas streams like those seen in the study. Steam or air volumes require continuous adjustment based on gas composition to prevent soot formation. Refinery flared gas compositions may change quickly enough such that control feedback issues become apparent, and ideal mixing of the gas with steam or air becomes difficult to achieve.

After an extensive review of the data, taking into account concerns from the Santa Barbara County oil and gas operators, the District determined the emission factor derived from the April 2015 EPA study was not applicable to onshore production flare operations in Santa Barbara County.

E. District Flare Studies (1991 and 2015)

In the early 1990's, the District determined that several emergency flaring scenarios at Exxon's Santa Ynez Unit and Chevron's Gaviota processing facilities had the potential to cause large sulfur oxide (SO_x) emissions and violate state and federal ambient air quality standards for SO_x in the area. The District commissioned a study to mitigate predicted violations by reducing or eliminating excess flaring at the facilities. The report, released in July 1991, also developed District wide flare emission factors for criteria pollutants associated with flaring activities. Prior to this report, the District used AP-42 factors for Natural Gas Combustion. These AP-42 factors, designed for estimating emissions from controlled natural gas combustion inside a boiler or process heater, proved unreliable when applied to flaring operations due to the inherent differences between the combustion properties of boilers and flares.

Flare emission factors were derived based on available literature and analyses of test data, including the EPA's 1983 Flare Efficiency Study. The data from these studies was evaluated to obtain the average ROC/THC mass ratios for each type of flare tested. Only flares with

combustion efficiencies greater than 98 percent (mass basis) and steam-to-fuel ratios less than one were analyzed. Assumptions of the reactive content range of produced gas were made to obtain a final ROC emission factor of 0.086 lb/MMBtu.

While the emission factor derived by the study was used for many years as a best available factor, the underlying data used in the study was based on previous EPA studies unrepresentative of flaring operations conducted at oil and gas production fields in Santa Barbara County. The study also cited the EPA's 1983 Flare Efficiency Study when excluding all data below a base combustion efficiency of 98 percent which corresponds to a 99.5 percent hydrocarbon destruction efficiency. According to the more recent EPA's 2012 Flare Design Study, a combustion efficiency of 96.5 percent corresponding to a destruction efficiency of 98 percent (mass basis) more accurately represented good flare performance.

Due to poor representation of existing ROC emission factors for onshore oil and gas production flares, the District proceeded to conduct a new study beginning in July 2015. A common challenge all prior studies have encountered is the applicability of an emission factor to a wide range of flare designs and operating scenarios in industry. By narrowing the focus of the study to flares operating at local onshore oil and gas production facilities, the final emission factor would be more representative of operations occurring in the county.

III. METHODOLOGY

A. Introduction

The District established a methodology to determine the worst case scenario flare emission factor while taking into account cost and resource restrictions. The District determined that conducting direct emissions testing using the pFTIR or DIAL methods found in the EPA studies was not a feasible option due to lack of resources. Instead, the District relied on facility inspection and permit reports for study data.

The District created a set of criteria that a flare must possess in order to be included in the study. After compiling a list of all oil and gas flares in the County, any flares with a lack of reported flare data were removed. Using gas analyses and reported flared volumes, the District calculated a weighted ROC emission factor for each facility. All of the facility data was subsequently averaged to calculate the new county-wide flare ROC emission factor.

B. Assumptions

According to the EPA, properly designed and operated flares, "destroy volatile organic compounds (VOC) or volatile hazardous air pollutants (HAP) with a destruction efficiency of 98 percent or greater". The District made the assumption that all flares in compliance with the technology based standards of District Rule 359.D.2, and the General Provisions of 40 CFR Part 60 Section 18(b) through (d), are considered "properly operated" and achieve a minimum destruction efficiency of 98 percent (mass basis). The technology based requirements for flares include smokeless operation, minimum heating content of inlet gas (200 Btu/scf if non-assisted and 300 Btu/scf if assisted), and use of a reliable ignition source. To calculate the most conservative emission factor, the District deemed it reasonable to apply the 98 percent destruction efficiency to all flaring events.

Secondly, the District assumed that the periodic gas analyses used to determine the flared gas ROC content is representative of gas quality at the facility over the entirety of a reporting period. The District understands that there is an inherent variation for any measurements taken over a period of time and that no two gas samples, even taken sequentially, will be identical. However, gas from a specific production field tends to have a consistent heat content and composition with minimal variation over time. Typically, only operational changes such as the production from a new formation or new wells will cause a significant change in overall gas composition at the flare header.

C. Study Criteria

The study was limited to onshore oil and gas production flares. Therefore, flares operating at oil refineries, gas plants, offshore platforms, wastewater treatment plants, and landfills were excluded. These flares combust gases not found at the type of oil and gas production facilities being evaluated and would not provide representative data.

Emergency flares were excluded from the study since emergency flaring events are not representative of typical operations at a facility. Furthermore, the volume of produced gas combusted during unplanned flaring events is minimal in comparison to planned flaring.

Offshore flares operating on the OCS oil platforms were removed from consideration due to operational differences with flares found at onshore production fields. The offshore platform flares often serve as dual purpose production and emergency flares. As noted above, emergency flares where not included as part of this study. Additionally, the offshore flares have significantly higher maximum heat input ratings compared to their onshore counterparts since the units are designed to handle large gas flows. This difference in gas flow rates makes comparing onshore and offshore flares difficult.

Lastly, only flares which operated in compliance with District Rule 359.D were used in the study. Compliance was determined based on review of District inspection reports. This study criteria was included to ensure the flares met the assumed 98 percent destruction efficiency.

The following table summarizes the eighteen oil and gas production flares which met the aforementioned study criteria:

Company	Facility	Facility	Permit	Device	Flare Rating
	č	ID	Number	ID	(MMBtu/hr)
AmRich Energy	Bradley II Lease	03226	14409	387954	4.375
AmRich Energy	Chamberlin Lease	11328	13846	113588	87.500
AmRich Energy	Chamberlin	11461	14294	387050	3.280
	Hathaway Lease				
BE Conway Energy	Enos Lease	04114	8496-R8	5846	4.370
BE Conway Energy	Newhall Lease	03841	8042-R8	6227	2.187
BE Conway Energy	Union Sugar	04108	7750-R9	5839	2.187
	Lease				
ERG Resources	Peshine/Tompkins	04129	14617	386944	5.500
	Lease				
ERG Resources	Williams Holding	03009	13500	1671	14.150
	Lease				
Greka Oil and Gas	Armelin Lease	03736	7775-R6	3332	21.870
Greka Oil and Gas	Bradley Lands	04103	7053-R9	5838	12.900
Greka Oil and Gas	Morganti Lease	03303	8096-R9	8428	5.625
HDT Inc.	Los Flores Ranch	11468	14337	387328	20.800
PetroRock	Calderon Lease	11456	14271-01	386923	21.875
PRE Resources ¹	Careaga #1	04017	13719-R1	114417	62.500
Sierra Resources, Inc. ²	Barham/Boyne	03777	8269-R7	3344	17.500
	Leases				
Sierra Resources, Inc. ²	Blair Lease (1)	02637	8837-R8	1412	91.880
Sierra Resources, Inc.	Blair Lease (2)	08673	14405	387448	33.400
Towne Exploration	Luton Lease	04106	13903	5838	2.188
Underground Energy	Asphaltea Lease	11312	13980	386661	6.000

Table 1. Flares Meeting Study Criteria

¹ Data is from when Venoco Inc. owned and operated the facility

² Previously Purisima Hills, LLC

D. Flares Used in Study

Of the eighteen onshore production flares meeting the study criteria, an additional nine were excluded from the study due to a lack of data (see Table 2). These included flares operating at older facilities that either did not have a gas sampling permit requirement or were idle. Additionally, flares at newly permitted facilities which have not yet submitted the results of the required gas sampling were not included.

Company	Facility	Facility ID	Permit Number	Device ID	Flare Rating (MMBtu/hr)
BE Conway Energy	Enos Lease	04114	8496-R8	5846	4.370
BE Conway Energy	Union Sugar Lease	04108	7750-R9	5839	2.187
ERG Resources	Williams Holding	03009	13500	1671	14.150
	Lease				
Greka Oil and Gas	Bradley Lands	04103	7053-R9	5838	12.900
Greka Oil and Gas Morganti Lease		03303	8096-R9	8428	5.625
PRE Resources	Careaga #1	04017	13719-R1	114417	62.500
Sierra Resources, Inc.	Barham/Boyne	03777	8269-R7	3344	17.500
	Leases				
Sierra Resources, Inc.	Blair Lease (1)	02637	8837-R8	1412	91.880
Sierra Resources, Inc.	Blair Lease (2)	08673	14405	387448	33.400

Table 2: Study Flares

E. Flare Data

The District incorporates conditions in oil and gas production facility permits requiring the regular sampling of the facility's produced gas and reporting the volume of produced gas flared during the reporting period. These pieces of information allowed the District to calculate the Santa Barbara County flare ROC emission factor.

The produced gas analyses were conducted using ASTM D1945, ASTM D3588, or a District approved alternative methods. These methods determine properties of the produced gas including composition and higher heating value using gas chromatography. Figure 1 on the next page shows an example printout of a gas analysis report.

Figure 1. Sample Gas Analysis Report

	OE		
OILFIELD	ENVIRONMENTAL	& COMPLIANCE	, INC.
Client: Sierra Re	source	SAMPLE ID: 1405771	1
P.U. Box	1812	Date Sampled: 12/26/14	@ 0845
Santa Ma	Ptropage	Date Analyzed: 12/26/14	@ 1454
Aut. Mananne	Strange	Lab Contact: J. Carste	15
Facility: Drum Car	2400	Motor	
Description: Drum Car	won Gas Scrubber	Pressure: 27	neia
Note: Annual O	il and Gas Samples	Temp: 21	F
	Gas Analysis by Chromatograp	hy - ASTM D 1945/3588	
Component	Mole %	Weight %	G/MCF
Oxygen	0.02	0.04	
Nitrogen	1.94	0.04	-
Carbon Diovide	9.94	. 2.02	-
Hydrogen Sulfide	0.00	7.03	•
riya ogen oande	0.00	0.00	-
Methane	82.62	63.90	-
Ethane	4.80	6.95	1.222
Propane	3.68	7.82	1.014
i-Butane	0.54	1.52	0.177
n-Butane	1.54	4.30	0.485
neo-Pentane	0.00	0.00	0.000
i-Pentane	0.41	1.43	0.150
n-Pentane	0.52	1.81	0.189
2,2-Dimethylbutane	0.06	0.26	0.023
2,3-Dimethylbutane	0.00	0.00	0.000
2-Methylpentane	0.21	0.86	0.075
3-Methylpentane	0.26	1.09	0.095
n-Hexane	0.01	0.05	0.005
Hexanes Plus	0.08	0.33	0.034
Totals	100.0	100.0	3.468
Specific Gravity, Calculated	0.7162 air = 1	,	
Compressibility (Z) Factor	0.9968	CHONS	Weight %
		Carbon	71.37
Gross Calorific Value		Hydrogen	20.86
BTU/ft [*] dry	1146.5	Oxygen	5.15
BTU/ft ³ wet	1126.5	Nitrogen	2.62
		Sulfur	0.00
Net Calorific Value			
BTU/ft [°] dry	1038.5	EPA 'F' Factor (60°F, 1AT	A) 8564.5
BTU/ft" wet	1020.4	SDCF/MMBTU	
Hydrogen Sulfide = 2.2	ppm		
All results reported at 60°F an	d 14.696 psia.		
ND: None Detected	NA: Not Analyzed	G/MCE: Gallone/Thousand	Public East

307 ROEMER WAY SUITE 300 SANTA MARIA CA 93454 (805) 922-4772 FAX	(805) 925-3376
--	----------------

The gas analysis results provide both the organic and inert compound fractions found in the produced gas. The organic content of a typical natural gas sample consists mainly of methane with progressively smaller fractions of heavier hydrocarbons such as propane, butane, pentane, etc. These organics are often denoted as C1 through C8+ in gas analyses. District Rule 102 does not define methane and ethane as reactive organic compounds. Therefore, these compounds were excluded when determined the flare ROC emission factor.

F. Relevant Equations and Calculations

The first step to calculate each facility's flare ROC emission factor was to determine the ROC content of the produced gas at the facility. For each reporting period that a gas analysis was conducted, Equation 1 was used to calculate the total molecular weight of ROC in the gas sample based on each compounds molecular weight and molecular percentage per the gas sample.

Equation 1

Total Molecular Weight Gas ROC
$$\frac{lb}{lb-mol} = \sum_{i}^{n} ((\frac{x_i}{100}) \times M_i)$$

 $\frac{Where}{x_i = mole \ percentage}$ $M_i = mole \ cular \ weight \ of \ reactive \ organic \ molecule \ i \ (which \ excludes \ methane \ and \ ethane).$

At standard conditions (60 °F, 14.696 psia), at which the results of the gas analysis are reported, an ideal gas has a molar volume of 379.48 scf/lb-mole. Treating the field gas as an ideal gas and using the molar volume, the total mass of reactive compounds per scf entering the flare can be calculated using Equation 2.

Equation 2

$$\frac{lb \ ROC}{scf} = Total \ Molecular \ Weight \ Gas \ ROC \ \frac{lb}{lb - mol} \times \frac{1 \ lb - mol}{379.48 \ scf}$$

Assuming the minimum 98 percent destruction efficiency for all properly designed and operated flares, two percent of the total inlet reactive gas entering a flare goes unreacted and emitted to the atmosphere as ROC emissions. Using this conservative destruction efficiency as a worst case scenario efficiency provides the maximum estimate of ROC content in the flare exhaust plume. The flare ROC emission factor (lb/MMBtu) can be determined using the calculated reactive organic compounds' mass per standard cubic foot of gas (Equation 2), the 98 percent assumed destruction efficiency, and the gas analysis' dry gross calorific higher heating value. Equation 3 below shows this calculation:

Equation 3

$$\frac{lb}{MMBtu} = \left(\frac{lb}{scf} \div \frac{BTU}{scf}\right) \times 10^6 \times (1 - 0.98)$$

The calculated flare ROC emission factor is only valid for the reporting period in which a gas analysis was conducted. In order to account for the varying operations over the course of several reporting periods, the District determined that using a weighted-average based on the volume of gas flared would be used to calculate each facility's flare ROC factor. Equation 4 converts individual reporting period ROC emission factors into a facility wide emission factor.

Equation 4

Facility ROC Emission Factor =
$$\sum_{i}^{n} (Flared Gas Volume_{i} * \frac{lb ROC}{scf}) / \sum_{i}^{n} Flared Gas Volume_{i}$$
$$\frac{Where}{i = the first reporting period}$$

Finally, the calculated facility emission factors are averaged to determine the final Santa Barbara County-wide onshore ROC production flare emission factor using Equation 5.

Equation 5

County Wide ROC Emission Factor =
$$\frac{\sum Facility \ ROC \ Emission \ Factors}{n}$$

<u>Where</u> n = the number of Facility ROC Emission Factor data points

IV. RESULTS

A. Facility Emission Factors

Using the calculation methodologies specified in the previous section, the District calculated the following emission factors for each facility used in this study:

Company	Facility	Facility ID	Device ID	Flare Rating (MMBtu/hr)	Emission Factor (lb/MMBtu)
BE Conway Energy	Enos Lease	04114	5846	4.370	0.159
BE Conway Energy	Union Sugar Lease	04108	5839	2.187	0.247
ERG Resources	Williams Holding	03009	1671	14.150	0.180
	Lease				
Greka Oil and Gas	Bradley Lands	04103	5838	12.900	0.398
Greka Oil and Gas	Morganti Lease	03303	8428	5.625	0.054
PRE Resources	Careaga #1	04017	114417	62.500	0.309
Sierra Resources, Inc.	Barham/Boyne	03777	3344	17.500	0.098
	Leases				
Sierra Resources, Inc.	Blair Lease (1)	02637	1412	91.880	0.170
Sierra Resources, Inc.	Blair Lease (2)	08673	387448	33.400	0.186

Table 3: Facility Emission Factors.

Detailed calculations for each facility and supporting documentation may be found in the Appendices.

B. County-Wide Emission Factor

The District elected to use a non-weighted average of all the facility factors to calculate the Santa Barbara County-wide ROC factor since some facilities had more data available and the District wanted to equally representation of the various oil and gas production facilities. The calculated Santa Barbara County-wide ROC factor was 0.200 lb/MMBtu.

V. DATA ANALYSIS AND VALIDATION

A major goal of the study was to use sufficiently narrow criteria in the candidate flare selection process to remove uncertainty in the data. Since no direct source testing was performed, the District relied on the accuracy and precision of the produced gas chromatography analyses conducted by certified state laboratories for the individual report data points.

Unlike EPA's wide ranging flare studies, the District study solely focused on flare units with similar capacity, function, and combusted field gas extracted from geological formations found in Santa Barbara County. It is reasonable to expect the reactive content of the gas and calculated emission factors to be relatively similar and consistent from year to year at a facility level. The population size of the study includes nearly all of the operating onshore production flares in the county. Therefore, any final emission factor will likely be representative of production flare emissions in the county.

With a mean of 0.200 lb/MMBtu and a standard deviation of 0.105 lb/MMBtu, eight of the nine flares had calculated emission factors that fell within one standard deviation of the mean and all data fell within two standard deviations. Figure 2 below shows the study's data standard deviation distribution. The studies standard deviation of 0.105 lb/MMBtu was normalized and each facilities individual standard deviation was plotted, depicting a normal distribution.

Further analysis was required to determine if outlier data was present using the Dixon Q outlier test. This method, for identification and rejection of outliers, assumes normal distribution of the data and should not be used to reject data more than once in a data set. The first step in conducting this analysis was to determine normality in the emission factor data. The unweighted facility emission factors were collected and plotted as a histogram. A histogram distributes the data into a range, and the number of

values that fall into a specific range is represented by the y axis (frequency). Figure 3 shows the comparison of the data distribution to the distribution expected from data which follows a Gaussian distribution.

Figure 3: Histogram Comparing Data to Gaussian Distribution.

While not exact, the data generally follows a normal distribution and allows the Dixon Q outlier test to be conducted. Running the data through the Dixon Q outlier test at a 95 percent confidence interval yields no outliers in the dataset. The District believes all of the collected data is valid and properly used to conduct this study.

VI. CONCLUSIONS

The Santa Barbara County, onshore production flare ROC emission factor was calculated to be **0.200 lb/MMBtu**. The District believes this emission factor should be used in place of the current AP-42 ROC emission factor.

VII. REFERENCES

- BE Conway Energy. (2011). 2010 Annual Report of Production, B.E. Conway Energy Inc., Union Sugar Lease, PTO 7750 and Associated Permits. San Luis Obispo, CA: Falkenhagen, Bruce.
- BE Conway Energy. (2012). 2011 Annual Report of Production, B.E. Conway Energy Inc., Enos Lease, PTO 8496 and Associated Permits. San Luis Obispo, CA: Falkenhagen, Bruce.
- BE Conway Energy. (2013). 2012 Annual Report of Production, B.E. Conway Energy Inc., Enos Lease, PTO 8496 and Associated Permits. San Luis Obispo, CA: Falkenhagen, Bruce.
- BE Conway Energy. (2014). 2013 Annual Report of Production, B.E. Conway Energy Inc., Enos Lease, PTO 8496 and Associated Permits. San Luis Obispo, CA: Falkenhagen, Bruce.
- BE Conway Energy. (2014). 2013 Annual Report of Production, B.E. Conway Energy Inc., Union Sugar Lease, PTO 7750 and Associated Permits. San Luis Obispo, CA: Falkenhagen, Bruce.
- BE Conway Energy. (2015). 2014 Annual Report of Production, B.E. Conway Energy Inc., Enos Lease, PTO 8496 and Associated Permits. San Luis Obispo, CA: Falkenhagen, Bruce.
- ERG Operating Company. (2012). ERG Operating Company, 2011 Annual Report Williams Holding, Cat Canyon Oilfield PTO 8059-R8 and ATC 13500; FID: 03009. Santa Maria, CA: Oakley, Ben.
- ERG Operating Company. (2013). ERG Operating Company, 2012 Annual Report Williams Holding, Cat Canyon Oilfield PTO 8059-R8, PTO 13500, ATC/PTO 13899; FID: 03009. Santa Maria, CA: Oakley, Ben.
- ERG Operating Company. (2014). ERG Operating Company, 2013 Annual Report Williams Holding, Cat Canyon West PTO 8059-R9; FID: 03009. Santa Maria, CA: Oakley, Ben.
- ERG Operating Company. (2015). ERG Operating Company, 2014 Annual Report Williams Holding Lease, Cat Canyon Oilfield PTO 8059-R9 ATC 13668-02, ATC 14126, ATC 14312; FID: 03009. Santa Maria, CA: Oakley, Ben.
- Greka Oil and Gas. (2012). *Greka Annual Compliance Verification Report 2011*, Casmalia SSID #4630. Santa Maria, CA: Whalen, Susan.
- Greka Oil and Gas. (2012). Greka Annual Compliance Verification Report 2011. Santa Maria, CA: Whalen, Susan.
- Greka Oil and Gas. (2013). 2012 Annual Report for the Casmalia Stationary Source (SSID 4630).Santa Maria, CA: Boyer, Jeanette.
- Greka Oil and Gas. (2014). *Clark Avenue Stationary Source 2013 Annual Report*. Santa Maria, CA: Whalen, Susan.
- Greka Oil and Gas. (2015). *Clark Avenue Stationary Source 2013 Annual Report*. Santa Maria, CA: Boyer, Jeanette.

- Greka Oil and Gas. (2015). 2014 Annual Report for the Casmalia Stationary Source (SSID 4630). Santa Maria, CA: Boyer, Jeanette.
- Santa Barbara County Air Pollution Control District. (1991). *Flare Study: Phase I Report*. Santa Barbara, CA: Sterrner, Steve.
- Sierra Resources Inc. (2014). 2013 Annual Report. Sierra Resources Inc. Blair Lease. Mammoth Lakes, CA: Ebbert, Doug.
- Sierra Resources Inc. (2014). 2013 Annual Report, Sierra Resources Inc., H.P. Boyne Lease. Mammoth Lakes, CA: Ebbert, Doug.
- Sierra Resources Inc. (2015). Sierra Resources Inc. Blair Lease 2014 Annual Compliance Verification Report. Mammoth Lakes, CA: Ebbert, Doug.
- Sierra Resources Inc. (2015). Sierra Resources Inc. 2014 Annual Compliance Verification Report, H.P. Boyne Lease. Mammoth Lakes, CA: Ebbert, Doug.
- United States Environmental Protection Agency. (1983). AP 42, Fifth Edition, Volume I, Chapter 13: Miscellaneous Sources. Washington, DC: U.S. EPA Office of Air Quality Planning and Standards (OAQPS).
- United States Environmental Protection Agency. (1983). *Flare Efficiency Study (EPA-60072/2-83/052)*. Austin, TX: Engineering-Science, Inc.
- United States Environmental Protection Agency. (1997). *Title 40: Protection of Environment, Chapter I, Subchapter C, Part 60: Standards of Performance for New Stationary Sources, Subpart A.* Washington, DC: U.S. EPA.
- United States Environmental Protection Agency. (2012). *Parameters for Properly Designed and Operated Flares*. Washington, DC: U.S. EPA Office of Air Quality Planning and Standards (OAQPS).
- Venoco Inc. (2012). 2011 Annual Compliance Report, Careaga #1, FID 04017, PTO 8704-R7. Carpinteria, CA: Garrett, John.
- Venoco Inc. (2013). 2012 Annual Compliance Report, Careaga #1, Well #6-21, FID 04017, PTO 13719 and ATC 13889. Carpinteria, CA: Garrett, John.

A.1 General Information

Permit #	8496-R8
Facility Name	Enos Lease
FID	4114
Company	BE Conway Energy
Device ID #	5846
Make	NAO
Model	Unknown
Max Heat Rating (MMBTU/hr)	4.37
Air Assisted?	no
Steam Assisted?	no

A.2 Gas Analysis Summary

	Gas	Information from Analysi	S	•	•
	1	2	3	4	5
Location of Sample:	unknown	unknown	unknown	unknown	unknown
Actual Year of Analysis:	2010	2011	2012	2013	2014
ROC Mol%	4.44	4.42	4.25	5.61	5.82
BTU Content (Btu/scf) HHV, dry, 14.73 psi 60F	1005.7	1003.4	989.4	1016.3	1026.7
lb ROC/scf	0.0072	0.0073	0.0067	0.0088	0.0094
Assumed Control %	98	98	98	98	98
Outlet ROC (ppmv)	888	884	850	1122	1164
Calculated ROC Emission Factor (Ib/MMBtu)	0.143	0.146	0.136	0.174	0.184
Gas Flared in Year (scf)	9563000	16156000	19376000	18957000	22418000
notes:	none	none	none	none	none
Weighted Average ROC Emission Factor based on flare volume:		0.159	1		

A.3.1 Annual Flare Volume (2010)

BE Conwa	y Energy	Enos Leas	e Emission	s Summary, 2	010	02/04/2011	
		Reductions	in Emissi	one (retiond t		٥	
Production	Rates		AT ETTISON	Permitted	o permitted	I) Actual Augus	
Wells	5	ī		Production		Actual Avera	ge
	Oll Produ	iction (BOPD)	160		Production	
	Gas Proc	luction (MSC	FD)	800		4.6	
	Flare gas	(MSCED)	,	100		33.3	
	Heater or	AS (MSCED)		100		26.2	
		(MSCE)	^	14.1		14.1	100.2%
	H2S in Fi	Iel Gas		706		5,156	
	Days of P	Induction		265		96	
	Loads of	Oll		565		365	
	Well-days	ол		1925		11	
	Days of P	roduction		1025		1553	85.1%
		outoliti		305		365	100.0%
••••••		•• ••••••		PODUCTION			
		Oil	Brod	used Gas		Well-	
Month	B/	M B/D	MSCEA	A MECEID		Days of	
	-//	. 0/0	MOOFIL		ppm H2	s Prod.	days
Jan	125	4.0	1.394	45.0	80	125	24
Feb	64	2.3	1,313	46.9	80	73	31
March	144	4.7	1.607	51.8	80	150	28
April	128	4.3	1,398	46.6	80	102	31
May	159	5.1	657	21.2	80	150	30
June	201	6.7	690	23.0	80	100	31
July	117	3.8	730	23.5	100	150	30
August	151	4.9	635	20.5	100	155	31
Sept	153	5.1	606	20.0	100	155	31
Oct	139	4.5	1 089	35.1	100	123	30
Nov	153	51	958	31.0	120	87	31
Dec	160	52	1 065	34.4	120	108	30
		0.2	1,000	54.4	125	120	31
Totals	1,694	BOPY	12,142	MSCF/yr	96	1 553	265
	71	MGal				1,000	305
Average	4.6	BOPD	33.3	MSCF/d		4.25	well-vr
	Flare	d Gas	Dele	0	Heat	er Gas	
Month	MSCEM	MECEID	Sales	s Gas	(Max of	unit 24-7)	heater
monan	MOOTIN	MSCF/D	Machim	MSCF/D	MSCF/M	MSCF/D	days
Jan	1,175	37.9	0	0.0	420		
Feb	1.115	39.8	0	0.0	400	14.1	31
March	1.388	44.8	0	0.0	430	14.1	28
April	1,186	39.5	ő	0.0	438	14.1	31
May	438	14.1	õ	0.0	424	14.1	30
June	478	15.9	0	0.0	438	14.1	31
July	511	16.5	ő	0.0	424	14.1	30
August	416	13.4	ő	0.0	438	14.1	31
Sept	394	13.1	0	0.0	438	14.1	31
Oct	870	28.1	0	0.0	424	14.1	30
Nov	746	24.9	0	0.0	438	14.1	31
Dec	846	27.3	0	0.0	424	14.1	30
200750520		27.0	0	0.0	438	14.1	31
Totals	9,563	MSCF/yr	0	MSCE/vr	5 156	MECEAN	
Average	26.2	MSCF/d	0.0	MSCF/d	14 1	ASCEId	365
					14.1 1		

A.3.2 Annual Flare Volume (2011)

BE Conway Energy		Enos Lease	Emissions Su	immary, 201	1	02/05/2012	
		Reductions in	n Emissions	(ratioed to p	ermitted)		
Production F	Rates		F	Permitted	F	Actual Average	
Wolle	5		F	Production	F	roduction	
VVCIIS	Oil Productio	(BOPD)		160		5.7	
	Cas Braduct	ion (MSCE	(0)	800		51.3	
	Gas Produci	MACCED)		100		44.3	
	Flare gas (MSCFD)		14.1		14.1	100.2%
	Heater gas	(MSCFD)		14.1		5 156	
		(MSCFY)		700		101	
	H2S in Fuel	Gas		796		265	
	Days of Prod	duction		365		305	
	Loads of Oil			1000000		10	00.09/
	Well-days of	n		1825		1059	90.9%
	Days of Pro	duction		365		365	100.0%
				ODUCTION		Well-	
		Oil	Produc	ed Gas		Days of	
Month	B/M	B/D	MSCF/M	MSCF/D	ppm H2S	Prod.	days
lan	129	42	1,032	33.3	100	108	31
Eab	170	61	911	32.5	100	100	28
reb	160	5.2	2 155	69.5	100	143	31
March	100	10.0	1 953	61.8	80	138	30
April	300	10.0	2,070	67.1	80	155	31
May	155	5.0	2,079	64.4	80	150	30
June	50	1.7	1,922	04.1	105	155	31
July	281	9.1	1,459	47.1	125	155	31
August	218	7.0	1,399	45.1	125	100	20
Sept	182	6.1	1,415	47.2	125	149	30
Oct	128	4.1	1,508	48.6	100	153	31
Nov	144	4.8	1,423	47.4	100	129	30
Dec	148	4.8	1,579	50.9	100	124	31
Totals	2,066	BOPY	18,735	MSCF/yr	101	1,659	365
Average	87 5.7	MGai BOPD	51.3	MSCF/d		4.55	well-yr
					Host	or Gas	
		10	Color	Can	(Max of	unit 24-7)	heate
	Fiar	ed Gas	MCCEM	MECEID	MECEM	MSCE/D	davs
Month	MSCF/N	MSCF/L	MSCF/M	WISCHID	MOOTIN	moorre	
Jan	813	26.2	0	0.0	438	14.1	31
Feb	713	25.5	0	0.0	396	14.1	28
March	1,936	62.5	0	0.0	438	14.1	31
Anril	1.641	54.7	0	0.0	424	14.1	30
May	1 860	60.0	0	0.0	438	14.1	31
lune	1 710	57.0	0	0.0	424	14.1	30
July	1 240	40.0	ő	0.0	438	14.1	31
August	1 190	39.1	0	0.0	438	14.1	31
August	1,100	40.4	0	0.0	424	14.1	30
Sept	1,203	40.1	0	0.0	438	14.1	31
Oct	1,289	41.0	0	0.0	424	14.1	30
Nov	1,211	40.4	0	0.0	438	14.1	31
Dec	1,360	43.9	0	0.0	400	14.1	51
Totals	16,156	MSCF/yr	0	MSCF/yr	5,156	MSCF/yr	365
Average	44.3	MSCF/d	0.0	MSCF/d	14.1	MSCF/d	

A.3.3 Annual Flare Volume (2012)

BE Conway	Energy	Enos Lease	Emissions	Summary, 20	12	02/02/2013	
		Reductions	In Emissions	s (ratioed to	permitted)		
Production	Rates			Permitted		Actual Average	е
Wells	5			Production		Production	
	Oil Product	tion (BOPD)		160		5.4	
	Gas Produ	ction (MSCI	ED)	800		60.0	
	Elare cas (MSCED)		27	100		52.9	
	Hontor and	(MOCED)		14.1		44.4	100 2%
	Heater gas	(MSCFD)	<u>_</u>	14.1		E 170	100.270
		(MSCFT)	700		5,170	
	H2S in Fue	Gas		796		113	
	Days of Pri	oduction		306		306	
	Loads of O	41				12	
	Well-days	on		1830		1709	93.4%
	Days of Pri	oduction		366		366	100.0%
		API Gravity:	13.5				
			ACTUAL P	RODUCTION		Well-	
Oil		Produ	ced Gas		Days of		
Month	B/M	B/D	MSCF/M	MSCF/D	ppm H2S	Prod.	days
Jan	146	4.7	1,660	53.5	100	124	31
Feb	124	43	1.823	62.9	100	115	29
March	184	5.9	1 997	64.4	100	124	31
April	136	4.5	2 030	67.7	125	150	30
April	184	F.3	1,007	62.5	125	155	21
iviay	104	5.5	1,937	02.5	125	150	20
June	154	5.1	2,025	67.5	125	150	30
July	207	6.7	1,930	62.3	125	128	31
August	286	9.2	1,866	60.2	125	155	31
Sept	126	4.2	1,930	64.3	125	150	30
Oct	159	5.1	1,993	64.3	100	155	31
Nov	142	4.7	1,368	45.6	100	148	30
Dec	160	5.2	1,403	45.3	100	155	31
Totals	1,987	BOPY	21,962	MSCF/yr	113	1,709	366
	83	MGal					
Average	5.4	BOPD	60.0	MSCF/d		4.67	well-yr
					Heat	er Gas	
	Flar	ed Gas	Sale	s Gas	(Max of	unit 24-7)	heater
Month	MSCF/N	MSCF/D	MSCF/M	MSCF/D	MSCF/M	MSCF/D	days
Jan	1.441	46.5	0	0.0	438	14.1	31
Feb	1.618	55.8	0	0.0	410	14.1	29
March	1 778	57.4	0	0.0	438	14.1	31
Anril	1 818	60.6	0	0.0	424	14.1	30
May	1 718	65 A	0	0.0	429	14.1	21
hung	1,710	60.4	0	0.0	400	44.1	31
June	1,013	60.4	0	0.0	424	14.1	30
July	1,/11	55.2	0	0.0	438	14.1	31
August	1,647	53.1	0	0.0	438	14.1	31
Sept	1,718	57.3	0	0.0	424	14.1	30
Oct	1,774	57.2	0	0.0	438	14.1	31
Nov	1,156	38.5	0	0.0	424	14.1	30
Dec	1,184	38.2	0	0.0	438	14.1	31
Totals	19,376	MSCF/yr	0	MSCF/yr	5,170	MSCF/yr	366
Average	52.9	MSCF/d	0.0	MSCF/d	14.1	MSCF/d	
				2.00.73.707.057		2010-2010-2010-2014	

A.3.4 Annual Flare Volume (2013)

BE Conway Energy		Enos Lease Emissions Summary, 2013				02/07/2014	
		Reductions in	Emissions	(ratioed to p	permitted)		
Production	Rates	Permitted				Actual Average	
Wells	5			Production		Production	
Trong	Oil Productio	ion (BOPD)		160		5.8	
	Gas Produc	tion (MSCED	(MSCED) 800			59.0	
	Gas Floud	MSCED)	<i>,</i>	100		51.9	
	Flare gas (MSCFD)		14.1		14.1	100 2%
	Heater gas	(MSCFD)		14.1		5 156	100.270
		(MSCFY)		700		5,150	
	H2S in Fuel	Gas		196			
	Days of Pro	duction		365		305	
	Loads of Oil	l,					
	Well-days o	n		1825		1819	99.7%
	Days of Pro	duction		365		365	100.0%
		API Gravity:	13.0				
		A	CTUAL PR	ODUCTION		Well-	
		Oil	Produc	ed Gas		Days of	
Month	B/M	B/D	MSCF/M	MSCF/D	ppm H2S	Prod.	days
lan	166	53	1 482	47.8	80	155	31
Jan	100	0.0	1,902	38.8	80	140	28
Feb	124	4.4	1 1 2 2	36.5	80	155	31
March	152	4.9	1,132	30.5	100	150	30
April	180	6.0	1,230	41.0	100	155	31
May	136	4.4	1,632	52.6	100	155	20
June	301	10.0	2,224	74.1	100	145	30
July	162	5.2	2,071	66.8	80	155	31
August	166	5.3	2,171	70.0	80	155	31
Sept	168	5.6	2,074	69.1	80	150	30
Oct	184	5.9	2,137	68.9	80	155	31
Nov	197	6.6	2,181	72.7	80	150	30
Dec	181	5.8	2,117	68.3	80	154	31
Totals	2,117	BOPY	21,536	MSCF/yr	85	1,819	365
Totalo	89	MGal					
Average	5.8	BOPD	59.0	MSCF/d		4.98	well-yr
					Heat	er Gas	
	Elor	ad Cos	Sala	Gae	(Max of	unit 24-7)	heater
	MCCE	NSCE/D	MSCEM	MSCE/D	MSCE/M	MSCE/D	davs
Month	MSCF/M	MSCF/D	MOCFIN	Macrid	MOOPIN	Moorie	days
Jan	1,263	40.7	0	0.0	438	14.1	31
Feb	887	31.7	0	0.0	396	14.1	28
March	913	29.5	0	0.0	438	14.1	31
Aoril	1 0 1 8	33.9	0	0.0	424	14.1	30
May	1 413	45.6	õ	0.0	438	14.1	31
lung	2,012	67.1	ő	0.0	424	14.1	30
June	2,012	60.7	0	0.0	139	14.1	31
July	1,852	59.7	0	0.0	400	14.1	31
August	1,952	63.0	0	0.0	430	14.1	20
Sept	1,862	62.1	0	0.0	424	14.1	30
Oct	1,918	61.9	0	0.0	438	14.1	31
Nov	1,969	65.6	0	0.0	424	14.1	30
Dec	1,898	61.2	0	0.0	438	14.1	31
Totals	18,957	MSCF/yr	0	MSCF/yr	5,156	MSCF/yr	365
Average	51.9	MSCF/d	0.0	MSCF/d	14.1	MSCF/d	

A.3.5 Annual Flare Volume (2014)

BE Conway Energy		Enos Lease Emissions Summary, 2014			14	02/16/2015	
		Reductions in	Emissions	(ratioed to	permitted)		
Production	Rates			Permitted		Actual Average)
Wells	5			Production		Production	
	Oil Producti	on (BOPD)		160		8.1	
	Gas Produc	tion (MSCFI	(800		68.7	
	Elare das (MSCED)		100		61.4	
	Hantor and	(MSCED)		14 1		14.6	103.4%
	neater gas	(MOCEV)		14.1		5 323	100.470
		(INSUFT)		706		0,020	
	H2S IN Fuel	Gas		790		07	
	Days of Pro	duction		305		305	
	Loads of Oi	1				18	
	Well-days o	n		1825		1825	100.0%
	Days of Pro	duction		365		365	100.0%
		API Gravity:	13.0				
			ACTUAL PE	RODUCTION		Well-	
		Oil	Produe	ced Gas		Days of	
Manth	D/M	B/D	MSCEIM	MSCE/D	nom H2S	Prod	davs
wonth	D/IVI	BID	WISCHIN	WISCHID	ppiirri20	1100.	dayo
Jan	193	6.2	2,135	68.9	100	155	31
Feb	153	5.5	2,036	72.7	100	140	28
March	195	6.3	1,944	62.7	125	155	31
April	179	6.0	2,085	69.5	80	150	30
May	382	12.3	2 138	69.0	80	155	31
luno	200	9.7	2,100	67.8	80	150	30
June	200	0.0	2,000	71 7	80	155	31
July	300	9.9	2,222	64.5	80	155	31
August	387	12.5	2,000	04.0	80	155	20
Sept	105	3.5	2,230	74.3	80	150	30
Oct	303	9.8	2,192	70.7	80	155	31
Nov	268	8.9	2,119	70.6	80	150	30
Dec	197	6.3	1,944	62.7	80	155	31
Totals	2,959	BOPY	25.078	MSCF/yr	87	1,825	365
	124	MGal		•			
Average	8.1	BOPD	68.7	MSCF/d		5.00	well-yr
					Hoat	or Gae	
	Flore	d Caa	Sala	Coc	/ Max of	unit 24_7)	heater
	Flare	Gas	Sales	MOOFID	(Max Or	MCCE/D	dave
Month	MSCF/M	MSCF/D	MSCF/M	MSCFID	MSCF/M	MISCHID	uays
Jan	1,916	61.8	0	0.0	438	14.1	31
Feb	1,832	65.4	0	0.0	409	14.6	28
March	1,718	55.4	0	0.0	453	14.6	31
April	1.866	62.2	0	0.0	438	14.6	30
May	1 912	61.7	0	0.0	453	14.6	31
luno	1 814	60.5	õ	0.0	438	14.6	30
Julie	1,014	64.4	0	0.0	453	14.6	31
Juguet	1,990	57.0	0	0.0	453	14.0	31
August	1,774	07.2	0	0.0	400	14.0	20
Sept	2,011	67.0	0	0.0	438	14.0	30
Oct	1,964	63.4	0	0.0	456	14.7	31
Nov	1,899	63.3	0	0.0	441	14./	30
Dec	1,716	55.4	0	0.0	456	14.7	31
Totals	22,418	MSCF/yr	0	MSCF/yr	5,323	MSCF/yr	365
Average	61.4	MSCF/d	0.0	MSCF/d	14.6	MSCF/d	

A.4.1 Gas Analysis (2010)

OILFIELD ENVIRONMENTAL	AND COMPLIANCE
Client: Conway Energy	SAMPLE ID: 1004649-4
PO Box 2050 D	ate Sampled: 11/23/10 @ 0810
Orcutt, CA 93457 Di	ate Analyzed: 11/23/10 @ 1337
Attn: Mr. Joe Patterson	Lab Contact: J. Carstens
Facility: Enos	Meter: -
Description: Enos Fuel Gas	Pressure: 10.0 psig
Note: Annual Oil & Gas sample	Temperature: 51 °F

Gas Analysis by Chromatography - ASTM D 3588-91						
Component	Mole %	Weight %		G/MCF	_	
Oxygen	0.00	0.00		-		
Nitrogen	0.11	0.14		-		
Carbon Dioxide	12.66	25.41		-		
Hydrogen Sulfide	NA	-		•		
Methane	80.51	58.90				
Ethane	2.28	3.13		0.582		
Propane	1.59	3.19		0.438		
i-Butane	0.45	1.21		0.149		
n-Butane	0.81	2.14		0.255		
neo-Pentane	0.00	0.00		0.000		
i-Pentane	0.42	1.39		0.154		
n-Pentane	0.16	0.53		0.059		
2,2-Dimethylbutane	0.02	0.09		0.009		
2,3-Dimethylbutane	0.22	0.85		0.078		
2-Methylpentane	0.16	0.62		0.057		
3-Methylpentane	0.00	0.00		0.000		
n-Hexane	0.05	0.20		0.021		
Hexanes Plus	0.56	2.19		0.234		
Totals	100.0	100.0		2.035		
Specific Gravity, Calculated	0.7570 air = 1					
Compressibility (Z) Factor	0.9968		CHONS	Weight %		
			Carbon	63.82		
Gross Calorific Value			Hydrogen	17.57		
BTU/ft ³ dry	1005.7		Oxygen	18.47		
BTU/ft ³ wet	988.2		Nitrogen	0.14		
			Sulfur	0.00		
Net Calorific Value						
BTU/ft ^a dry	909.6	EPA 'F' Factor	(60°F, 1ATM)	8635.94		
BTU/ft [*] wet	893.8	SDCF/MMBTU				
Hydrogen Sulfide =	NA ppm					
ND: None Detected	NA: Not Analyzed	G/MCF: Gallon	s/Thousand Cut	oic Feet		

	mol %	mol%/100	MW	MW ROC
Methane	80.51	0.8051	16.044	12.89
Ethane	2.28	0.0228	30.07	0.69
Propane	1.59	0.0159	44.097	0.70
Iso-Butane	0.45	0.0045	58.12	0.26
N-Butane	0.81	0.0081	58.12	0.47
neo-pentane	0	0	72.15	0.00
i-Pentane	0.42	0.0042	72.15	0.30
n-Pentane	0.16	0.0016	72.15	0.12
2,2-Dimethylbutane	0.02	0.0002	86.18	0.02
2,3-Dimethylbutane	0.22	0.0022	86.18	0.19
2-Methylpentane	0.16	0.0016	86.18	0.14
3-Methylpentane	0	0	86.18	0.00
n-Hexane	0.05	0.0005	86.18	0.04
Hexane Plus	0.56	0.0056	86.18	0.48
ROC Mol%	4.44			

Total Mol Wt. ROC C3 to C6+	2.7223	lb/lbmol
At STP 1lb-mol =	379.48	scf
Total lbs of ROC C3 to C6+ per ft3	0.0072	

A.4.2 Gas Analysis (2011)

OILFIELD 8	NVIRONMENT	TAL AND C	OMPLIANCE				
Client: Conway E	neray	SAMPLE ID: 11051	39-4				
PO Box 2	050	Date Sampled: 10/26/	11 @ 0830				
Orcutt, CA	93457	Date Analyzed: 10/28/	11 @ 1346				
Attn: Mr. Joe P	atterson	Lab Contact: J. Car	stens				
Facility: Enos		Meter	.				
Description: Enos Fue	Gas	Pressure:	5.0 psig				
Note: Appuel O		Temperature:	co °E				
Note: Annual Of	a Gas sample	Temperature.	00				
Gas Analysis by Chromatography - ASTM D 3588-91							
Component	Mole %	Weight %	G/MCF				
0.000	0.15	0.22					
Nitragan	0.15	0.22					
Corbon Dievide	0.23	0.30					
Hudrosen Sulfide	12.91	25.71	-				
nyarogen Suinae	NA	-					
Methane	79.98	58.08					
Ethane	2.31	3.15	0.589				
Propane	1.49	2.97	0.411				
i-Butane	0.47	1.23	0.153				
n-Butane	0.69	1.81	0.217				
neo-Pentane	0.00	0.00	0.000				
i-Pentane	0.47	1.53	0.172				
n-Pentane	0.14	0.47	0.052				
2,2-Dimethylbutane	0.03	0.10	0.009				
2,3-Dimethylbutane	0.38	1.49	0.138				
2-Methylpentane	0.00	0.00	0.000				
3-Methylpentane	0.00	0.00	0.000				
n-Hexane	0.03	0.13	0.014				
Hexanes Plus	0.72	2.80	0.302				
Totals	100.0	100.0	2.057				
Specific Gravity, Calculated	0.7627 air = 1						
Compressibility (Z) Factor	0.9968	CH	IONS Weight %				
		Carbo	n 63.41				
Gross Calorific Value		Hydrog	jen 17.38				
BTU/ft ³ dry	1003.4	Oxyge	n 18.91				
BTU/ft ³ wet	986.0	Nitroge	an 0.30				
		Sulfur	0.00				
Net Calorific Value							
BTU/ft ³ dry	907.7	EPA 'F' Factor (60°F,	1ATM) 8642.38				
BTU/ft ³ wet	891.9	SDCF/MMBTU					
Hydrogen Sulfide =	NA ppm						
ND: None Detected	NA: Not Analyzed	G/MCF: Gallons/Thous	sand Cubic Feet				

	mol %	mol%/100	MW	MW ROC
Methane	79.98	0.7998	16.044	12.80
Ethane	2.31	0.0231	30.07	0.69
Propane	1.49	0.0149	44.097	0.66
Iso-Butane	0.47	0.0047	58.12	0.27
N-Butane	0.69	0.0069	58.12	0.40
neo-pentane	0	0	72.15	0.00
i-Pentane	0.47	0.0047	72.15	0.34
n-Pentane	0.14	0.0014	72.15	0.10
2,2-Dimethylbutane	0.03	0.0003	86.18	0.03
2,3-Dimethylbutane	0.38	0.0038	86.18	0.33
2-Methylpentane	0	0	86.18	0.00
3-Methylpentane	0	0	86.18	0.00
n-Hexane	0.03	0.0003	86.18	0.03
Hexane Plus	0.72	0.0072	86.18	0.62
ROC Mol%	4.42			

Total Mol Wt. ROC C3 to C6+	2.7710	lb/lbmol
At STP 1 lb-mol =	379.48	scf
Total lbs of ROC C3 to C6+ per ft3	0.0073	

2011

A.4.3 Gas Analysis (2012)

Client: Conway Energy SAMPLE ID: 1205210-1 P.O. Box 2050 Date Sampled: 10/16/12 @ 1420 Orcuit, CA 93457 Date Analyzed: 10/18/12 @ 0742 Attn: Joe Patterson Lab Contact: J. Carstens Facility: Santa Maria, CA Meter: - Description: Enos Fuel Gas Pressure: 5.0 psig Note: Annual Oil & Gas Samples 2C Temp: 90 °F Gas Analysis by Chromatography - ASTM D 1945/3588 Component Mole % Weight % G/MCF Oxygen 0.33 0.48 - Nitrogen 0.78 1.00 - Carbon Dioxide 12.58 25.28 - Hydrogen Sulfide 0.00 0.00 - Methane 79.78 58.42 - Ethane 2.26 3.11 0.576 Propane 1.58 3.18 0.436 I-Butane 0.77 1.26 0.155 n-Butane 0.77 0.62 0.248 i-Betane 0.50 1.65 0.184	2012
Book Date Sample: Discretion P.O. Box 2050 Date Sample: 10/16/12 @ 1420 Oroutt, CA 93457 Date Analyzed: 10/18/12 @ 0742 Attn: Joe Patterson Lab Contact: J. Carstens Facility: Santa Maria, CA Meter: - Description: Enos Fuel Gas Pressure: 5.0 psig Note: Annual Oil & Gas Samples 2C Temp: 90 °F Gas Analysis by Chromatography - ASTM D 1945/3588 Component Mole % Weight % G/MCF Oxygen 0.33 0.48 - - Nitrogen 0.78 1.00 - - Carbon Dioxide 12.58 25.28 - - Hydrogen Sulfide 0.00 0.00 - - Methane 79.78 58.42 - - Ethane 2.26 3.11 0.576 - Propane 1.58 3.18 0.436 - i-Butane 0.77 1.26	2012
Orcuit, CA 93457 Date Analyzad: 10/18/12 @ 0742 Attn: Joe Patterson Lab Contact: J. Carstens Facility: Santa Maria, CA Meter: Description: Enos Fuel Gas Pressure: Note: Annual Oil & Gas Samples 2C Temp: Gas Analysis by Chromatography - ASTM D 1945/3588 Component Mole % Weight % G/MCF Oxygen 0.33 0.48 - Mole % Weight % G/MCF Oxygen 0.33 0.48 Note: Annual Oil & Gas Samples 2C Temp: 90 % Gas Analysis by Chromatography - ASTM D 1945/3588 Component Mole % Weight % G/MCF Oxygen 0.33 0.48 - Note: Annual Oil & Gas Samples 2C C Gas Analysis by Chromatography - ASTM D 1945/3588 Component 0.478	
Attn: Joe Patterson Lab Contact: J. Carstens Facility: Santa Maria, CA Meter: - Description: Enos Fuel Gas Pressure: 5.0 psig Note: Annual Oil & Gas Samples 2C Temp: 90 %F Gas Analysis by Chromatography - ASTM D 1945/3588 Component Mole % Weight % G/MCF Oxygen 0.33 0.48 - Nitrogen 0.78 1.00 - Carbon Dioxide 12.58 25.28 - Hydrogen Sulfide 0.00 0.00 - Methane 79.78 58.42 - Ethane 2.26 3.11 0.676 Propane 1.58 3.18 0.436 IButane 0.78 2.08 0.248 neo-Pentane 0.00 0.00 0.000 Pentane 0.50 1.65 0.184 n-Pentane 0.17 0.57 0.062 2.2-Dimethylbutane 0.02 0.08 0.007 2.3-Dimethylbutane 0.24 0.96 0.089 <th></th>	
Facility: Santa Maria, CA Meter: - Description: Enos Fuel Gas Pressure: 5.0 psig Note: Annual Oil & Gas Samples 2C Temp: 90 % F Gas Analysis by Chromatography - ASTM D 1945/3588 Component Mole % Weight % G/MCF Oxygen 0.33 0.48 Nitrogen 0.33 0.48 Nitrogen 0.00 O Oxygen 0.33 0.48 Nitrogen 0.078 G/MCF Oxygen 0.033 0.48 - Mole % Weight % G/MCF Oxygen 0.33 0.48 Nitrogen 0.78 1.00 - Carbon Dioxide 12.58 2.26 Hydrogen Sulfide 0.00 0.00 - Methane 79.78 58.42 - - Ethane 2.26 3.11 0.576 - <t< th=""><th></th></t<>	
Facility: Santa Maria, CA Meter: - Description: Enos Fuel Gas Pressure: 5.0 psig Note: Annual Oil & Gas Samples 2C Temp: 90 %F Gas Analysis by Chromatography - ASTM D 1945/3588 Component Mole % Weight % G/MCF Oxygen 0.33 0.48 - - Nitrogen 0.78 1.00 - Carbon Dioxide 12.58 25.28 - Hydrogen Sulfide 0.00 0.00 - Methane 79.78 58.42 - Ethane 2.26 3.11 0.576 Propane 1.58 3.18 0.436 I-Butane 0.47 1.26 0.155 n-Butane 0.78 2.08 0.248 neo-Pentane 0.00 0.00 0.000 I-Pentane 0.50 1.65 0.184 n-Pentane 0.02 0.08 0.007 2.2-Dimethylbutane 0.20 0.79 0.073 2-Methydrentane 0.24 0.96	
Description: Enos Fuel Gas Note: Annual Oil & Gas Samples 2C Pressure: Temp: 5.0 psig Gas Analysis by Chromatography - ASTM D 1945/3588 - <	
Note: Annual Oil & Gas Samples 2C Temp: 90 %F Gas Analysis by Chromatography - ASTM D 1945/3588 Component Mole % Weight % G/MCF Oxygen 0.33 0.48 - Oxygen 0.033 0.48 - Oxygen 0.078 2.26 - Hydrogen Sulfide 0.00 0.000 - Ethane 7.26 3.11 0.576 Propane 1.58 3.18 0.438 IBUATE 0.077	
Gas Analysis by Chromatography - ASTM D 1945/3588 Component Mole % Weight % G/MCF Oxygen 0.33 0.48 - Nitrogen 0.78 1.00 - Carbon Dioxide 12.58 25.28 - Hydrogen Sulfide 0.00 0.00 - Methane 79.78 58.42 - Ethane 2.26 3.11 0.676 Propane 1.58 3.18 0.436 Eutane 0.47 1.26 0.155 n-Butane 0.76 2.08 0.248 neo-Pentane 0.00 0.00 0.000 -Pentane 0.50 1.65 0.184 n-Pentane 0.02 0.08 0.007 2.3-Dimethylbutane 0.20 0.79 0.073 2-Methylpentane 0.24 0.96 0.089	
Mole % Weight % G/MCF Oxygen 0.33 0.48 - Nitrogen 0.78 1.00 - Carbon Dioxide 12.58 25.28 - Hydrogen Sulfide 0.00 0.00 - Methane 79.78 58.42 - Ethane 2.26 3.11 0.676 Propane 1.58 3.18 0.436 -Butane 0.47 1.26 0.155 n-Butane 0.78 2.08 0.248 neo-Pentane 0.00 0.00 0.000 -Pentane 0.50 1.65 0.184 n-Pentane 0.17 0.57 0.062 2.2-Dimethylbutane 0.20 0.79 0.073 2-Methylpentane 0.24 0.96 0.089	
Oxygen 0.33 0.48 - Nitrogen 0.78 1.00 - Carbon Dioxide 12.58 25.28 - Hydrogen Sulfide 0.00 0.00 - Methane 79.78 58.42 - Ethane 2.26 3.11 0.576 Propane 1.58 3.18 0.436 i-Butane 0.47 1.26 0.155 n-Butane 0.78 2.08 0.248 nec-Pentane 0.00 0.00 0.000 i-Pentane 0.50 1.65 0.184 n-Pentane 0.17 0.57 0.062 2.2-Dimethylbutane 0.02 0.08 0.007 2.3-Dimethylbutane 0.20 0.79 0.073 2-Methylpentane 0.24 0.96 0.089	
Oxygen 0.33 0.48 - Ntrogen 0.78 1.00 - Carbon Dioxide 12.58 25.28 - Hydrogen Sulfide 0.00 0.00 - Methane 79.78 58.42 - Ethane 2.26 3.11 0.676 Propane 1.58 3.18 0.436 i-Butane 0.47 1.26 0.155 n-Butane 0.78 2.08 0.248 neo-Pentane 0.00 0.00 0.000 -Pentane 0.50 1.65 0.184 n-Pentane 0.17 0.57 0.062 2.2-Dimethylbutane 0.02 0.08 0.007 2.3-Dimethylbutane 0.20 0.79 0.073 2-Methylpentane 0.24 0.96 0.089	
Nitrogen 0.78 1.00 - Carbon Dioxide 12.58 25.28 - Hydrogen Sulfide 0.00 0.00 - Methane 79.78 58.42 - Ethane 2.26 3.11 0.576 Propane 1.58 3.18 0.436 i-Butane 0.47 1.26 0.155 n-Butane 0.78 2.08 0.248 neo-Pentane 0.00 0.000 0.000 i-Pentane 0.50 1.65 0.184 0.7-Pentane 0.02 0.08 0.007 2.3-Dimethylbutane 0.20 0.79 0.073 2-Methylpentane 0.24 0.96 0.089	
Carbon bloxide 12.58 25.28 - Hydrogen Sulfide 0.00 0.00 - Methane 79.78 58.42 - Ethane 2.26 3.11 0.576 Propane 1.58 3.18 0.436 i-Butane 0.47 1.26 0.155 n-Butane 0.78 2.08 0.248 neo-Pentane 0.00 0.000 0.000 i-Pentane 0.50 1.65 0.184 -1-Pentane 0.17 0.57 0.062 2.2-Dimethylbutane 0.02 0.08 0.007 2.3-Dimethylbutane 0.20 0.79 0.073 2-Methylpentane 0.24 0.96 0.89	
Hydrogen Sulfide 0.00 0.00 - Methane 79.78 58.42 - Ethane 2.26 3.11 0.676 Propane 1.58 3.18 0.436 I-Butane 0.47 1.26 0.155 n-Butane 0.78 2.08 0.248 neo-Pentane 0.00 0.00 0.000 I-Pentane 0.50 1.65 0.184 n-Pentane 0.17 0.57 0.062 2,2-Dimethylbutane 0.02 0.08 0.007 2,3-Dimethylbutane 0.20 0.79 0.073 2-Methylpentane 0.24 0.96 0.089	
Methane 79.78 58.42 - Ethane 2.26 3.11 0.576 Propane 1.58 3.18 0.436 i-Butane 0.47 1.26 0.155 n-Butane 0.78 2.08 0.248 neo-Pentane 0.00 0.00 0.000 i-Pentane 0.50 1.65 0.184 n-Pentane 0.17 0.57 0.062 2.2-Dimethylbutane 0.02 0.08 0.007 2.3-Dimethylbutane 0.20 0.79 0.073 2-Methylpentane 0.24 0.96 0.89	
Ethane 2.26 3.11 0.576 Propane 1.58 3.18 0.436 I-Butane 0.47 1.26 0.155 n-Butane 0.78 2.08 0.248 neo-Pentane 0.00 0.000 0.000 I-Pentane 0.50 1.65 0.184 n-Pentane 0.17 0.57 0.062 2.2-Dimethylbutane 0.02 0.08 0.007 2,3-Dimethylbutane 0.20 0.79 0.073 2-Methylpentane 0.24 0.96 0.089	
Propane 1.58 3.18 0.436 i-Butane 0.47 1.26 0.155 n-Butane 0.78 2.08 0.248 neo-Pentane 0.00 0.000 0.000 i-Pentane 0.50 1.65 0.184 n-Pentane 0.17 0.57 0.062 2.2-Dimethylbutane 0.02 0.08 0.007 2.3-Dimethylbutane 0.20 0.79 0.073 2-Methylpentane 0.20 0.68 0.089	
Butane 0.47 1.26 0.155 n-Butane 0.78 2.08 0.248 neo-Pentane 0.00 0.00 0.000 I-Pentane 0.50 1.65 0.184 n-Pentane 0.17 0.57 0.062 2,2-Dimethylbutane 0.02 0.08 0.007 2,3-Dimethylbutane 0.20 0.79 0.073 2-Methylpentane 0.24 0.96 0.089	
n-Butane 0.78 2.08 0.248 neo-Pentane 0.00 0.00 0.000 i-Pentane 0.50 1.65 0.184 n-Pentane 0.17 0.57 0.062 2,2-Dimethylbutane 0.22 0.08 0.007 2,3-Dimethylbutane 0.20 0.79 0.073 2-Methylpentane 0.24 0.96 0.089	
neo-Pentane 0.00 0.00 0.000 i-Pentane 0.50 1.65 0.184 n-Pentane 0.17 0.57 0.662 2.2-Dimethylbutane 0.02 0.08 0.007 2,3-Dimethylbutane 0.20 0.79 0.073 2-Methylpentane 0.24 0.96 0.089	
i-Pentane 0.50 1.65 0.184 n-Pentane 0.17 0.57 0.062 2.2-Dimethylbutane 0.02 0.08 0.007 2.3-Dimethylbutane 0.20 0.79 0.073 2-Methylpentane 0.24 0.96 0.089	
n-Pentane 0.17 0.57 0.062 2,2-Dimethylbutane 0.02 0.08 0.007 2,3-Dimethylbutane 0.20 0.79 0.073 2-Methylpentane 0.24 0.96 0.089	
2,2-Dimethylbutane 0.02 0.08 0.007 2,3-Dimethylbutane 0.20 0.79 0.073 2-Methylpentane 0.24 0.96 0.089	
2,3-Dimethylbutane 0.20 0.79 0.073 2-Methylpentane 0.24 0.96 0.089	
2-Methylpentane 0.24 0.96 0.089	
-weinypentane 0.00 0.00 0.00	
n-Hexane 0.02 0.08 0.008	
Hexanes Plus 0.27 1.07 0.114	
Totals100.0 100.0 1.951	
Specific Growity, Colouistad	
Carbon 62.81	
Gross Calorific Value Hydrogen 17.33	
BTU/ft ³ dry 989.4 Oxygen 18.86	
BTU/t ³ wet 972.2 Nitrogen 1.00	
Sulfur 0.00	
Net Calorific Value	
BTU/ft ³ dry 894.7 EPA 'F' Factor (60°F, 1ATM 8640.1	
BTU/ft ³ wet 879.1 SDCF/MMBTU	
Hydrogen Sulfice = NA ppm	
ND: None Detected NA: Not Analyzed G/MCF: Gallons/Thousand Cubic Feet	

	mol %	mol%/100	MW	MW ROO
Methane	79.78	0.7978	16.044	12.77
Ethane	2.26	0.0226	30.07	0.68
Propane	1.58	0.0158	44.097	0.70
Iso-Butane	0.47	0.0047	58.12	0.27
N-Butane	0.78	0.0078	58.12	0.45
neo-pentane	0	0	72.15	0.00
i-Pentane	0.5	0.005	72.15	0.36
n-Pentane	0.17	0.0017	72.15	0.12
2,2-Dimethylbutane	0.02	0.0002	86.18	0.02
2,3-Dimethylbutane	0.2	0.002	86.18	0.17
2-Methylpentane	0.24	0.0024	86.18	0.21
3-Methylpentane	0	0	86.18	0.00
n-Hexane	0.02	0.0002	86.18	0.02
Hexane Plus	0.27	0.0027	86.18	0.23
ROC Mol%	4.25			

Total Mol Wt. ROC C3 to C6+	2.5530	lb/lbmol
At STP 1 lb-mol =	379.48	scf
Total lbs of ROC C3 to C6+per ft3	0.0067	

A.4.4 Gas Analysis (2013)

OILFIELD ENVIRONMENTAL AND COMPLIANCE

Client: Conway Energy P.O. Box 2050 Orcutt, CA 93457 Attn: Joe Patterson	SAMPLE ID: 13 Date Sampled: 09 Date Analyzed: 09 Lab Contact: J.	04560-4 0/27/13 @ 0/27/13 @ Carstens	0 1000 0 1455	
Facility: Santa Maria Valley Description: Enos Fuel Gas Note: Annual Oil & Gas Samples 2013	Meter: Pressure: Temp:	- 1.0 98	psig °F	-

Component	Mole %	Weight %	G/MCF
Oxveen	0.00	0.00	
Nitrogen	0.09	0.11	-
Carbon Dioxide	13.97	27.05	-
Hydrogen Sulfide	0.01	0.01	
Methane	78.06	55.09	
Ethane	2.26	3.00	0.577
Propane	2.02	3.92	0.557
i-Butane	0.60	1.53	0.197
n-Butane	1.21	3.09	0.382
neo-Pentane	0.00	0.00	0.000
i-Pentane	0.58	1.85	0.213
n-Pentane	0.28	0.90	0.103
2,2-Dimethylbutane	0.05	0.20	0.019
2,3-Dimethylbutane	0.37	1.39	0.133
2-Methylpentane	0.02	0.08	0.007
3-Methylpentane	0.12	0.44	0.042
n-Hexane	0.05	0.17	0.019
Hexanes Plus	0.31	1.16	0.129
Totals	100.0	100.0	2.378
Specific Gravity, Calculated	0.7849 air = 1		
Compressibility (Z) Factor	0.9966	CH	ONS Weight %
		Car	bon 63.22
Gross Calorific Value		Hyd	drogen 16.99
BTU/ft ³ dry	1016.3	Oxy	ygen 19.66
BTU/ft ³ wet	998.6	Nite	rogen 0.11
		Sul	fur 0.01
Net Calorific Value			
BTU/ft ³ dry	919.9	EPA 'F' Factor (60°	°F, 1ATM) 8645.8
BTU/ft ³ wet	903.9	SDCF/MMBTU	
Hydrogen Sulfide = 63	ppm		
All results reported at 60oF a	nd 14.696 psia.		
ND: None Detected	NA: Not Applyzed	G/MCF: Gallons/The	ousand Cubic Feet

	mol %	mol%/100	MW	MW ROC
Methane	78.06	0.7806	16.044	12.49
Ethane	2.26	0.0226	30.07	0.68
Propane	2.02	0.0202	44.097	0.89
Iso-Butane	0.6	0.006	58.12	0.35
N-Butane	1.21	0.0121	58.12	0.70
neo-pentane	0	0	72.15	0.00
i-Pentane	0.58	0.0058	72.15	0.42
n-Pentane	0.28	0.0028	72.15	0.20
2,2-Dimethylbutane	0.05	0.0005	86.18	0.04
2,3-Dimethylbutane	0.37	0.0037	86.18	0.32
2-Methylpentane	0.02	0.0002	86.18	0.02
3-Methylpentane	0.12	0.0012	86.18	0.10
n-Hexane	0.05	0.0005	86.18	0.04
Hexane Plus	0.31	0.0031	86.18	0.27
ROC Mol%	5.61			

Total Mol Wt. ROC C3 to C6+	3.3561	lb/lbmol
At STP 1 lb-mol =	379.48	scf
Total lbs of ROC C3 to C6+ per ft3	0.0088	

A.4.5 Gas Analysis (2014)

Client: Conway Energy	/	SAMPLE ID: 140	4505-4
P.O. Box 2050		Date Sampled: 09/3	0/14 @ 0920
Orcutt, CA 934	57	Date Analyzed: 09/3	0/14 @ 1453
Attn: Joe Patterson		Lab Contact: J. C	arstens
Facility: Santa Maria Va	llev	Meter:	
Description: Ence Fuel Gas	inc)	Pressure:	0.5 psig
Note: Appuel Oil & G	as Samples 2014	Temp	70 °F
Cos An	alusie by Chromatogran	by - ASTM D 1945/	3588
Gas An	Mole %	Weight %	G/MCF
component	Mole %	weight %	Grinor
xvaen	0.38	0.54	
litrogen	1.47	1.81	-
arbon Dioxide	12.20	23.69	
lydrogen Sulfide	0.01	0.01	
Janagen, Banab			
Aethane	77.85	55.12	•
thane	2.27	3.01	0.578
ropane	1.95	3.80	0.538
Butane	0.60	1.53	0.195
-Butane	1.16	2.98	0.367
eo-Pentane	0.00	0.00	0.000
Pentane	0.62	1.96	0.226
-Pentane	0.27	0.88	0.100
2-Dimethylbutane	0.05	0.19	0.018
3-Dimethylbutane	0.44	1.69	0.161
Methylpentane	0.10	0.38	0.036
Methylpentane	0.00	0.00	0.000
Hexane	0.04	0.14	0.016
exanes Plus	0.59	2.25	0.249
otals	100.0	100.0	2.483
pecific Gravity, Calculated	0.7822 air = 1		
compressibility (Z) Factor	0.9967	CH	IONS Weight %
		Ca	rbon 63.23
Fross Calorific Value		Hy	drogen 17.18
STU/ft ³ dry	1026.7	Ox	ygen 17.77
TU/ft ³ wet	1008.9	Nit	rogen 1.81
		Su	lfur 0.01
let Calorific Value			
3TU/ft ^a dry	929.6	EPA 'F' Factor (60'	°F, 1ATM) 8646.1
3TU/ft ³ wet	913.4	SDCF/MMBTU	
lydrogen Sulfide = 63 pp	m		
i results reported at 60oF and 14	.696 psia.		
: None Detected NA	Not Analyzed	G/MCF: Gallons/Th	ousand Cubic Feet

	mol %	mol%/100	MW	MW ROC
Methane	77.85	0.7785	16.044	12.46
Ethane	2.27	0.0227	30.07	0.68
Propane	1.95	0.0195	44.097	0.86
Iso-Butane	0.6	0.006	58.12	0.35
N-Butane	1.16	0.0116	58.12	0.67
neo-pentane	0	0	72.15	0.00
i-Pentane	0.62	0.0062	72.15	0.45
n-Pentane	0.27	0.0027	72.15	0.19
2,2-Dimethylbutane	0.05	0.0005	86.18	0.04
2,3-Dimethylbutane	0.44	0.0044	86.18	0.38
2-Methylpentane	0.1	0.001	86.18	0.09
3-Methylpentane	0	0	86.18	0.00
n-Hexane	0.04	0.0004	86.18	0.03
Hexane Plus	0.59	0.0059	86.18	0.51
ROC Mol%	5.82			

Total Mol Wt. ROC C3 to C6+	3.5763	lb/lbmol
At STP 1 lb-mol =	379.48	scf
Total lbs of ROC C3 to C6+ per ft3	0.0094	

2014

B.1 General Information

Permit #	7750-R9
Facility Name	Union Sugar Lease
FID	4108
Company	BE Conway Energy
Device ID #	5839
Make	unknown
Model	unknown
Max Heat Rating (MMBTU/hr)	2.187
Air Assisted?	no
Steam Assisted?	no

B.2 Gas Analysis Summary

Gas Information from Analysis				
	1	2		
Location of Sample:	unknown	unknown		
Actual Year of Analysis:	2010	2013		
ROC Mol%	9.42	9.22		
BTU Content (Btu/scf) HHV, dry, 14.73 psi 60F	1162.7	1163.3		
lb ROC/scf	0.014405973	0.014192059		
Assumed Control %	98	98		
Outlet ROC (ppmv)	1884	1844		
Calculated ROC Emission Factor (Ib/MMBtu)	0.247802063	0.243996538		
Gas Flared in Year (scf)	4363000	1289000		
notes: none no				
Weighted Average ROC Emission Factor based on flare volume: 0.				

	Weighted Average ROC Emission Factor based on flare volume:	0.247
--	---	-------

B.3.1 Annual Flare Volume (2010)

·			~			ر معنو		
BE Convo		-						
BE COllwa	y Energy, ind	<u>u.</u>	Union Suga	ar Lease Emi	ssions Sumr	mary, 2010	02/04/2011	
				Permitted		Astual A		
9	wells			Permitted		Actual Ave	rage	
Ū.	BOPD			250		Production	10.10	
	Engine Ga	s MSCED		200		46.0	18.4%	
	Number	of engines a	t and of year	1924		11.6		
	Produced of	as (MSCE	D)	200		8	10 70	
		(MSCEY)	0,	300		38.1	12.7%	
	Heater das	(MSCED)		28	@1000PTU	13,895	400.00/	
	300	(MSCEY)		20	CONDIC	10 420	102.0%	
	H2S in Fue	d Gas		796		10,429		
	Calender D	avs of Prod	uction	365		265	100.0%	
	Loads of O	il		000		106	100.0%	
	Well-days of	of Production	n	3,285		2 670	81 3%	
				0,1100		2,070	01.576	
		0.1	ACTUAL P	RODUCTION	1			
Manth		Oil	Produce	ed Gas	-Heater F	uel Gas	Calendar	Tank
Month	B/M	<u>B/L</u>	MSCF/M	MSCF/D	MSCF/M	MSCF/D	Days	Days
Jan	1 344	13.1	1 016	20.0	000			
Feb	1 326	43.4	1,210	39.2	886	28.6	31	31
March	1,520	47.5	1,045	37.3	800	28.6	28	28
April	1,512	40.0	1,201	41.3	886	28.6	31	31
May	1,530	49.0	1,107	38.9	857	28.6	30	30
June	1 471	49.0	1,109	30.4	886	28.6	31	31
July	1 488	48.0	1,140	30.0	857	28.6	30	30
August	1 485	40.0	1,190	30.4	886	28.6	31	31
Sept	961	32.0	1,100	30.3	886	28.6	31	31
Oct	1 488	48.0	1,107	30.9	857	28.6	30	30
Nov	1,293	43.1	1 107	36.0	000	28.6	31	31
Dec	1,392	44.9	1 1 3 6	36.6	896	28.6	30	30
	1,002	44.0	1,100	50.0	000	20.0	31	31
Totals	16,808	BOPY	13,895	MSCF/yr	10.429	MSCF/vr	365	365
Average	46.0	BOPD	38.1	MSCF/d	28.6	MSCF/d	000	000
	706	MGal	827	GOR				
	1100	Sale	es Gas	Well-Days	ICE	Flare	ed Gas	Days
lan	<u>H2S</u>	MSCF/M	MSCF/D	of Prod.	MSCF/Mo	MSCF/M	MSCF/D	Flared
Feb	25	0	0.0	191	360	398	12.8	31
March	25	0	0.0	202	325	347	12.4	28
April	20	0	0.0	227	360	463	14.9	31
May	25	0	0.0	229	348	390	13.0	30
June	20	U	0.0	241	360	371	12.0	31
July	20	0	0.0	236	348	363	12.1	30
August	80	U	0.0	238	360	372	12.0	31
Sent	00	0	0.0	240	360	368	11.9	31
Oct	160	0	0.0	165	348	330	11.0	30
Nov	160	0	0.0	244	360	313	10.1	31
Dec	160	0	0.0	228	348	330	11.0	30
Dec	150	U	0.0	229	360	318	10.3	31
Totals		0	MSCF/vr	2.670	4 237	4 262	MSCENT	205
Av. PPM	72	0.0	MSCF/d	7.315	well-vrs	12.0	MSCE/4	305
						12.0		uays

B.3.2 Annual Flare Volume (2013)

~								
BE Conway	Energy, Inc.		Union Sugar	Lease Emis	sions Summa	ary, 2013 (2/07/2014	
				Demitted			de l	
				Permitted		Production	30	
9	wells			250		44.9	17.9%	
	BOPD			250		11.6	11.070	
	Engine Gas	MSCFD		NA		11.0		-
	Number of	engines at e	and of year			20.6	0.0%	
	Produced ga	as (MSCFD)	300		29.0	9.370	
		(MSCFY)				10,821	102.0%	
	Heater gas	(MSCFD)		28	@1000B10	28.0	102.0%	
		(MSCFY)				10,429		
	H2S in Fuel	Gas		796		131	400.00/	
	Calender Da	ays of Produc	ction	365		365	100.0%	
	Loads of Oil					103	05 00/	
	Well-days of	f Production		3,285		2,812	85.6%	
		API gravity:	13.8					
			ACTUAL PR	RODUCTION	1			
		Oil	Produce	d Gas	-Heater Fu	iel Gas	Calendar	Tank
Month	B/M	B/D	MSCF/M	MSCF/D	MSCF/M	MSCF/D	Davs	Days
lan	457	14.7	1,182	38.1	886	28.6	31	31
Feb	1.428	51.0	698	24.9	800	28.6	28	28
March	1 360	43.9	818	26.4	886	28.6	31	31
April	1 458	48.6	777	25.9	857	28.6	30	30
May	1 4 3 4	46.3	818	26.4	886	28.6	31	31
May	1,434	40.5	777	25.9	857	28.6	30	30
June	1,430	47.0	818	26.4	886	28.6	31	31
July	1,450	40.0	010	26.4	886	28.6	31	31
August	1,377	44.4	777	20.4	857	28.6	30	30
Sept	1,2/3	42.4	1 100	20.9	007	28.6	31	31
Oct	1,488	48.0	1,100	37.0	957	20.0	30	30
Nov	1,775	59.2	1,143	30.1	007	20.0	31	31
Dec	1,438	46.4	1,029	33.2	000	20.0	51	0.
Totals	16,373	BOPY	10,821	MSCF/yr	10,429	MSCF/yr	365	365
Average	44.9	BOPD	29.6	MSCF/d	28.6	MSCF/d		
	688	MGal	661	GOR				
		Sale	s Gas	Well-Days	ICE	Flar	ed Gas	
	H2S	MSCF/M	MSCF/D	of Prod.	MSCF/Mo	MSCF/M	MSCF/D	1
Jan	125	0	0.0	236	360	364	0.0	-
Feb	125	0	0.0	217	325	0	0.0	
March	125	0	0.0	239	360	0	0.0	
April	175	Ő	0.0	233	348	0	0.0	
May	175	Ő	0.0	247	360	0	0.0	
June	175	õ	0.0	238	348	0	0.0	
July	100	õ	0.0	243	360	0	0.0	
August	100	ň	0.0	236	360	0	0.0	
Sont	100	ő	0.0	221	348	0	0.0	
Sept	100	0	0.0	235	360	348	0.0	
Oct	125	0	0.0	200	348	366	0.0	
NOV	125	0	0.0	230	260	211	0.0	
Dec	125	Ŏ	0.0	237	300	211	0.0	
Totals		0	MSCF/yr	2,812	4,237	1,289	MSCF/yr	
Av. PP	VI 131	0.0	MSCF/d	7.704	well-yrs	3.5	MSCF/d	
					-			

B.4.1 Gas Analysis (2010)

_	0	ł	L	F	I	E	L	D	Ε	N	v	ł	R	0	Ν	м	ε	Ν	Ŧ	А	ι	Α	Ν	D	С	0	м	Ρ	L	Т	А	Ν	С	ε
Γ					CI	ent	: 0	Conwa	ay E	ner	gy		-									SAM	MPL	E ID:	100	464	9-9							
							F	°O Bo	x 2	b50											- 1	Date \$	Sam	pled:	11/	23/1	0@	2 11	15					
							C	Drcutt,	, CA	93	457										0	Date A	۱nal	yzed:	11/	23/1	0@	2 13	03					
					1	١ttn	: N	Ar. Jo	e Pa	atte	rsor	٦										Lab	Co	ntact:	J. C	ars	tens	;						
				1	Fac	ility	: E	Enos															N	Aeter:			-							
			D	esc	rip	lion	: L	Jnion	Sug	jar	Fue	١G	as									1	Pres	ssure:		1	0.0		P	sig	1			
					No	ote:	A	Annua	I O	8	Gas	sa	mp	le								Tem	pera	ature:		1	56		0	F				

Component	Mole %	Weight %	_	G/MCF
Oxygen	0.12	0.16		-
Nitrogen	0.99	1.19		-
Carbon Dioxide	8.48	16.08		-
Hydrogen Sulfide	NA	-		-
Methane	76.01	52.54		
Ethane	4.98	6.45		1.269
Propane	4.18	7.94		1.152
i-Butane	0.67	1.69		0.221
n-Butane	1.84	4.62		0.582
neo-Pentane	0.00	0.00		0.000
i-Pentane	0.70	2.17		0.255
n-Pentane	0.64	2.00		0.233
2,2-Dimethylbutane	0.06	0.21		0.021
2,3-Dimethylbutane	0.30	1.11		0.109
2-Methylpentane	0.46	1.72		0.168
3-Methylpentane	0.00	0.00		0.000
n-Hexane	0.08	0.30		0.034
Hexanes Plus	0.49	1.81		0.205
Totals	100.0	100.0		4.247
Specific Gravity, Calculated	0.8013 air = 1			
Compressibility (Z) Factor	0.9961		CHONS	Weight %
			Carbon	68.37
Gross Calorific Value			Hydrogen	18.59
BTU/ft [°] dry	1162.7		Oxygen	11.85
BTU/ft ³ wet	1142.5		Nitrogen	1.19
Not Colorifia Valua			Sulfur	0.00
	1055.0		(CO ^O E 4 A TAB	0005.00
BTI 1/# ³ wet	1055.0	EPA F Factor	(OU P, TAIM)	0005.83
bront wet	1036.7	SUCP/MMB10		
Hydrogen Sulfide =	NA ppm			
ND: None Detected	NA: Not Analyzed	G/MCF: Gallons	/Thousand Cub	vic Feet

	mol %	mol%/100	MW	MW ROC
Methane	76.01	0.7601	16.044	12.16504
Ethane	4.98	0.0498	30.07	1.497486
Propane	4.18	0.0418	44.097	1.843255
Iso-Butane	0.67	0.0067	58.12	0.389404
N-Butane	1.84	0.0184	58.12	1.069408
neo-pentane	0	0	72.15	0
i-Pentane	0.7	0.007	72.15	0.50505
n-Pentane	0.64	0.0064	72.15	0.46176
2,2-Dimethylbutane	0.06	0.0006	86.18	0.051708
2,3-Dimethylbutane	0.3	0.003	86.18	0.25854
2-Methylpentane	0.46	0.0046	86.18	0.396428
3-Methylpentane	0	0	86.18	0
n-Hexane	0.08	0.0008	86.18	0.068944
Hexane Plus	0.49	0.0049	86.18	0.422282
ROC Mol%	9.42			

Total Mol Wt. ROC C3 to C6+	5.466779	lb/lbmol
At STP 1 lb-mol =	379.48	scf
Total lbs of ROC C3 to C6+ per ft3	0.014406	

B.4.2 Gas Analysis (2013)

OILFIELD ENVIRONMENTAL AND COMPLIANCE

			1001500.0		
Client	Conway Energy	SAMPLE ID:	1304560-9		
	P.O. Box 2050	Date Sampled:	09/27/13 @	g 1045	
	Orcutt, CA 93457	Date Analyzed:	09/27/13 @	£ 1553	
Attn	Joe Patterson	Lab Contact:	J. Carsten:	s	
Facility	Santa Maria Valley	Meter:	-		
Description	Union Sugar Fuel Gas	Pressure:	18	psig	
Note:	Annual Oil & Gas Samples 2013	Temp:	68	°F	

Component	Mole %	Weight %	G/MCF
Oxygen	0.00	0.00	
Nitrogen	0.78	0.95	-
Carbon Dioxide	8.30	15.86	
Hydrogen Sulfide	0.03	0.04	•
Methane	76.96	53.59	
Ethane	4.70	6.13	1.197
Propane	4.02	7.69	1.108
i-Butane	0.66	1.67	0.217
n-Butane	1.77	4.47	0.559
neo-Pentane	0.00	0.00	0.000
i-Pentane	0.69	2.17	0.253
n-Pentane	0.64	2.02	0.233
2,2-Dimethylbutane	0.05	0.20	0.019
2,3-Dimethylbutane	0.33	1.24	0.120
2-Methylpentane	0.52	1.96	0.190
3-Methylpentane	0.00	0.00	0.000
n-Hexane	0.04	0.16	0.018
Hexanes Plus	0.50	1.87	0.210
Totals	100.0	100.0	4.123
Specific Gravity, Calculated	0.7955 air = 1		
Compressibility (Z) Factor	0.9961	c	HONS Weight %
Gross Calorific Value		ů ř	udrogen 18.76
	1162.2	0	yunan 11.52
DTLU ⁴³ unot	1103.3	0	itrogon 0.65
BIONE Wet	1143.0	N S	ulgen 0.95 ulfur 0.04
Net Calorific Value		•	
BTU/ft ³ dry	1055.4	EPA 'F' Factor (6	0°F, 1ATM) 8594.3
BTU/ft ³ wet	1037.0	SDCF/MMBTU	
Hydrogen Sulfide = 250	ppm		
All results reported at 60oF a	nd 14.696 psia.		
ND: None Detected	NA: Not Analyzed	G/MCF: Galions/T	housand Cubic Feet

	mol %	mol%/100	MW	MW ROC
Methane	76.96	0.7696	16.044	12.31709
Ethane	4.7	0.047	30.07	1.41329
Propane	4.02	0.0402	44.097	1.772699
lso-Butane	0.66	0.0066	58.12	0.383592
N-Butane	1.77	0.0177	58.12	1.028724
neo-pentane	0	0	72.15	0
i-Pentane	0.69	0.0069	72.15	0.497835
n-Pentane	0.64	0.0064	72.15	0.46176
2,2-Dimethylbutane	0.05	0.0005	86.18	0.04309
2,3-Dimethylbutane	0.33	0.0033	86.18	0.284394
2-Methylpentane	0.52	0.0052	86.18	0.448136
3-Methylpentane	0	0	86.18	0
n-Hexane	0.04	0.0004	86.18	0.034472
Hexane Plus	0.5	0.005	86.18	0.4309
ROC Mol%	9.22			

Total Mol Wt. ROC C3 to C6+	5.385602	lb/lbmol
At STP 1 lb-mol =	379.48	scf
Total lbs of ROC C3 to C6+ per ft3	0.014192	
C.1 General Information

Permit #	PTO 13500
Facility Name	Williams Holding Lease
FID	3009
Company	ERG Resources, LLC.
Device ID #	1671

Make	McGill Americas Inc.
Model	N/A
Max Heat Rating (MMBTU/hr)	14.15
Air Assisted?	yes
Steam Assisted?	no

C.2 Gas Analysis Summary

Gas Information from Analysis				
	1	2	3	4
Location of Sample:	Fuel Gas@ compressor	Fuel Gas@ compressor	Fuel Gas@ compressor	Fuel Gas@ compressor
Actual Year of Analysis:	2011	2012	2013	2014
ROC Mol%	7.67	6.26	6.5	4.77
BTU Content (Btu/scf) HHV, dry, 14.73 psi 60F	1153.2	1105.2	1100.8	956.7
lb ROC/scf	0.0108	0.0092	0.0108	0.0078
Assumed Control %	98	98	98	98
Outlet ROC (ppmv)	1534	1252	1300	954
Calculated ROC Emission Factor (Ib/MMBtu)	0.188	0.167	0.197	0.163
Gas Flared in Year (scf)	79592000	76169000	31258000	13170000
notes:	None	None	None	None

Weighted Average ROC Emission Factor based on flare volume: 0.180

ERG Operating Company

C.3.1 Annual Flare Volume (2011)

	C Willia PTO 8 201	at Canyon Field ams Holding Lease 059 and ATC 13500 11 Annual Report	
PTO Condition 10a	Volume of Dilluent Used Each Month	PTO Condition 10c and ATC 5 c	High Mor
JANUARY	1,721	JANUARY	14
FEBRUARY	1,151	FEBRUARY	-
MARCH	1,782	MARCH	
APRIL	2,101	APRIL	
MAY	3,193	MAY	-
JUNE	3,948	JUNE	
JULY	1,875	JULY	
AUGUST	1,002	AUGUST	-
SEPTEMBER	992	SEPTEMBER	
OCTOBER	1,785	OCTOBER	-
NOVEMBER	2,582	NOVEMBER	
DECEMBER	2,428	DECEMBER	
TOTAL BBLS PER YEAR	24,558		

PTO Condition 10c and ATC 5 c	Highest Recorded Sulfur Content for Each Month/PPM of Gaseous Fuel Burned on Lease	Every Measurement Greater than 650PPMV w/Date & time of measurement
JANUARY	0	N/A
FEBRUARY	0	N/A
MARCH	0	N/A
APRIL	0	N/A
MAY	0	N/A
JUNE	0	NA
JULY	0	N/A
AUGUST	0	N/A
SEPTEMBER	200	N/A
OCTOBER	300	N/A
NOVEMBER	200	N/A
DECEMBER	200	N/A N/A

PTO Condition 10b and ATC 5b	Total MCF/Gaseous Fuel Burned in Flare
JANUARY	3 625
FEBRUARY	3,945
MARCH	4 922
APRIL	3 389
MAY	5 372
JUNE	6.608
JULY	7 433
AUGUST	7 776
SEPTEMBER	8 563
OCTOBER	12 323
NOVEMBER	6.265
DECEMBER	9 372
TOTAL GAS PER YE	AR 79.592

ATC Condition	ANNUAL HEATING VALUE OF THE GASEOUS FUEL
5d	BURNED
	See atached analysis by OEC, Inc.

PTO Condition 10e - Master Paint and Solvent Logs for the entire Cat Canyon stationary source submitted with report for GWP lease PTO 8171 FID: 03007

C.3.2 Annual Flare Volume (2012)

ERG Operating Company Cat Canyon Field Williams Holding Lease PTO 8059, PTO 13500 and ATC/PTO 13899 2012 Annual Report

PTO Condition 10a	Volume of Light Crude Oil Used Each Month
JANUARY	4,008
FEBRUARY	2,987
MARCH	2,822
APRIL	3,499
MAY	3,305
JUNE	3,317
JULY	4,301
AUGUST	5,618
SEPTEMBER	3,000
OCTOBER	3,499
NOVEMBER	4,655
DECEMBER	4,361
TOTAL BBL	S PER YEAR 45,371

PTO Condition 10c and ATC 5 c	Highest Recorded Sulfur Content for Each Month/PPM of Gaseous Fuel Burned on Lease	Every Measurement Greater than 650PPMV w/Date & time of measurement
JANUARY	375	N/A
FEBRUARY	200	N/A
MARCH	400	N/A
APRIL	400	N/A
MAY	300	N/A
JUNE	320	N/A
JULY	350	N/A
AUGUST	350	N/A
SEPTEMBER	350	N/A
OCTOBER	350	N/A
NOVEMBER	350	N/A
DECEMBER	350	N/A

PTO Condition	Total MCF/Gaseous
10b and ATC 5b	Fuel Burned in Flare
JANUARY	8,802
FEBRUARY	5,486
MARCH	2,980
APRIL	2,081
MAY	170
JUNE	4,800
JULY	9,334
AUGUST	9,425
SEPTEMBER	8,509
OCTOBER	9,810
NOVEMBER	9,394
DECEMBER	5.378
TOTAL GAS	PER YEAR 76,169

ATC Condition	ANNUAL HEATING VALUE OF THE GASEOUS FUEL
5d	BURNED
	See atached analysis by OEC, Inc.

PTO Condition 10e - Master Paint and Solvent Logs for the entire Cat Canyon stationary source submitted with report for GWP lease PTO 8171 FID: 03007

C.3.3 Annual Flare Volume (2013)

ERG Operating Company Cat Canyon Field Williams Holding Lease PTO 8059, PTO 13500 and ATC/PTO 13899 2013 Annual Report

	# Days Each Month	Total MCF/Gaseous
PTO Condition	Steam Generator 101	Fuel Burned in Steam
5a	Operated	Generator 101
JANUARY	12	17,596
FEBRUARY	15	14,518
MARCH	15	16,876
APRIL	10	10,313
MAY	21	25,470
JUNE	30	32,993
JULY	31	44,640
AUGUST	30	35,868
SEPTEMBER	30	46,470
OCTOBER	31	49,224
NOVEMBER	30	51,686
DECEMBER	31	51,008
	TOTAL GAS PER YEAR	396,662

	Highest Recorded Sulfur
	Content for Each
PTO Condition	Month/PPM of Gaseous
5d.	Fuel Burned in SGs
JANUARY	0
FEBRUARY	0
MARCH	0
APRIL	0
MAY	0
JUNE	0
JULY	0
AUGUST	0
SEPTEMBER	0
OCTOBER	0
NOVEMBER	0
DECEMBER	0
40 ppmv H2S L	imit - Steam Generators

DTO Condition	# Days Each Month	Total MCF/Gaseous
PIO Condition	Steam Generator 102	Fuel Burned in Steam
5a	Operated	Generator 102
JANUARY	9	5,052
FEBRUARY	19	22,836
MARCH	19	24,233
APRIL	19	25,751
MAY	31	46,299
JUNE	30	39,915
JULY	31	44,403
AUGUST	30	40,749
SEPTEMBER	30	50,159
CTOBER	31	52,988
DVEMBER	30	53,733
DECEMBER	31	54,965
	TOTAL GAS PER YEAR	461.083

0

40 ppmv H2S Limit - Steam Generators				
	16 March 16			
	Highest Recorded Sulfur			
	Content for Each			
PTO Condition	Month/PPM of Flare Gas			
5d.	Burned in Flare			
JANUARY	350			
FEBRUARY	350			
MARCH	350			
APRIL	350			
MAY	350			
JUNE	350			
JULY	180			
AUGUST	210			
SEPTEMBER	175			
OCTOBER	200			
NOVEMBER	0			
DECEMBER	0			
450 ppm	v H2S Limit - Flare			

PTO Condition	# Days Each Month the	Total MCF/Gaseous
5b	Flare Operated	Fuel Burned in Flare
JANUARY	31	6,861
FEBRUARY	28	6,235
MARCH	30	2,831
APRIL	26	5,711
MAY	18	1,870
JUNE	17	1,824
JULY	16	1,189
AUGUST	17	643
SEPTEMBER	13	624
OCTOBER	12	2,052
NOVEMBER	19	444
DECEMBER	10	974
	TOTAL GAS PER YEAR	31,258

PTO Condition	ANNUAL SULFUR CONTENT AND HEATING VALUE OF
5d., 5e.	THE GASEOUS FUEL BURNED
	See atached analysis by OEC, Inc.

PTO Condition 5f. - There was no maintenance done on the Low NOx burners or fuel meters during 2013.

PTO Condition 5k. - Master Paint and Solvent Logs for the entire West Cat Canyon stationary source submitted with report for GWP lease PTO 8171 FID: 03007

and a second sec		
PTO Condition 5c	# Days LCO Used	Volume of Light Crude Oil Used Each Month
JANUARY	31	3,856
FEBRUARY	28	3,835
MARCH	31	6,777
APRIL	30	11,896
MAY	31	11,747
JUNE	30	9,892
JULY	31	16,743
AUGUST	31	17,530
EPTEMBER	30	16,602
CTOBER	31	24,358
NOVEMBER	30	17,319
DECEMBER	31	15,074
	TOTAL BBLS PER YEAR	155.629

PTO Condition 5c. TVP of LCO - See attached OEC Report.

C.3.4 Annual Flare Volume (2014)

Lease:	Williams Holding
Data Year:	2014

PTO 08059-R9	ATC 13668-02	ATC 14126	ATC 14312	Permit Condition	DevilD	Day Description	Unite							2014 Data						
Cond. No.	Cond. No.	Cond. No.	Cond. No.	Permit Condition	Devid	Dev Description	Units	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
5.a.				Steam gen 101 fuel used	114891	85 mmBtu/hr	mcf	51,361	48,075	53,535	38,476	47,007	50,648	35,134	42,985	44,301	48,341	29,814	23,485	513,162
5.a.				No. of days used	114891	85 mmBtu/hr	days	31	28	31	24	31	30	21	31	30	31	18	14	320
5.a.				Steam gen 102 fuel used	386314	85 mmBtu/hr	mcf	55,122	49,410	51,504	47,015	48,579	52,422	35,541	45,164	45,961	51,219	28,607	32,822	543,366
5.a.				No. of days used	386314	85 mmBtu/hr	days	31	28	31	28	31	30	21	31	30	31	17	22	331
5.b.			4.a.	Flare fuel used	001671	14.15 mmBtu/hr	mcf	1,046	894	683	2,582	71	320	6,759	293	45	117	109	252	13,170
5.b.			4.a.	No. of days used	001671	14.15 mmBtu/hr	days	31	28	31	30	31	30	31	31	30	31	30	31	365
5.c.				LCO consumption per month			bbl	14,942	15,085	14,619	12,447	13,469	11,434	11,249	10,455	9,705	8,444	10,028	9,271	
5.c.	5.b.			LCO TVP			psi	A Contraction of the second					2.7							
5.c.	5.b.			LCO temperature			۴F					60								
	5.a.			LCO deliveries - ATC 13668-02 tanks			bbl/day	ay See Table 5a for ATC 13668-02 tanks LCO deliveries												
5.d.		5.a., 5.c.		Monthly and annual fuel gas H2S content - steam gens			ppm	0	0	0	0	0	0	0	0	0	0	0	0	ND
			4.b., 4.c.	Monthly and annual fuel gas H2S content - flare	001671	14.15 mmBtu/hr	ppm	0	0	0	0	0	0	0	0	0	0	0	0	ND
		5.b.		Scrubber change-out log				See Attachment 1 - H2S Scrubber Change-Out Log												
5.e.				HHV of fuel burned			Btu/scf													940
5.f.				Low NOx burners maintenance logs				No burner	maintenan	ce was con	ducted in 2	014.								
5.g.				Calibration records				See Attack	hment 2 - M	leter Calibra	ation Recor	ds								
5.h.				Source test reports				See Attacl	hment 3 - S	ource Test	Reports									
5.i.	-			Steam generator monitoring records				See Attacl	hment 4 - St	team Genei	rator Monite	oring Recor	ds							
5.j.				Well cellar pumping records				See Attacl	hment 5 - W	/ell Cellar P	umping Re	cords								
5.k.				Coating and solvent use				Coating &	Solvent Log	g for entire	WCC statio	nary source	e submitted	with report	for GWP le	ase PTO 0	8171-R8, F	ID: 03007		
51	5.0		4 d	Records required by 325 E 331 G 343 E 350 G & 350 H				See Attack	ment 6 - 18	M Renorte	All records	for other n	ulas provide	d alsowha	a on this sl	heef				

C.4.1 Gas Analysis (2011)

Client: ERG Op 6085 Ca Santa M	perating Group at Canyon Road faria, CA 93454	SAMPLE ID: 1105669-1 Date Sampled: 11/29/11 @ Date Analyzed: 11/30/11 @	0840 0831	20
Aut. Mr. Phil	Hosen	Lab Contact: J. Carstens		
Facility: GWP				
Description: Fuel Ga	as donce wit compressor	Receiver: -		
Note: Annual C	Oil and Gas Sampling	Temp: 61	°F	
G	as Analysis by Chromatogra	aphy - ASTM D 1945/3588		
Component	Mole %	Weight %	G/MCF	
Oxygen	0.00	0.00		
Nitrogen	271	3.66	-	
Carbon Dioxide	2.53	5.36	-	
Hydrogen Sulfide	0.01	0.01	1	
Methane	81 56	63.13		
Ethane	5.52	9.01		
Propane	4.25	0.01	1.407	
-Butane	0.63	9.04	1,171	
n-Butane	1.53	1.70	0.205	
neo-Pentane	0.00	4.30	0.484	
-Pentane	0.41	1.40	0.000	
n-Pentane	0.37	1.42	0.149	
2.2-Dimethylbutane	0.01	1.29	0.134	
2.3-Dimethylbutane	0.15	0.06	0.005	
-Methylpentane	0.15	0.64	0.055	
3-Methylpentane	0.00	0.78	0.068	
Hexane	0.00	0.00	0.000	
Hexanes Plus	0.02	0.10	0.010	
Totals	100.0	100.0	0.045	
	100.0	100.0	3.735	
Compressibility (Z) Factor	0.7157 air = 1 0.9968	CHONS	Weight %	
Gross Calorific Value		Garbon	71.40	
BTU/ft ³ dry	1153.2	Operation	20.90	
BTU/ft ³ wet	1133.1	Nitrogen	3.66	
let Calorific Value		Sulfur	0.01	
STU/ft ³ dry	1044.7	EPA 'F' Factor (60°F, 1ATM)	8575.0	
BTU/ft ³ wet	1026.6	SDCF/MMBTU	0070.0	

307 ROEMER WAY | SUITE 300 | SANTA MARIA | CA 93454 | (805) 922-4772 | FAX (805) 925-3376 | oecusa.com

	mol %	mol%/100	MW	MW ROC
Methane	81.56	0.8156	16.044	13.05
Ethane	5.52	0.0552	30.07	1.66
Propane	4.25	0.0425	44.097	1.87
Iso-Butane	0.63	0.0063	58.12	0.37
N-Butane	1.53	0.0153	58.12	0.89
neo-pentane	0	0	72.15	0.00
i-Pentane	0.41	0.0041	72.15	0.30
n-Pentane	0.37	0.0037	72.15	0.27
2,2-Dimethylbutane	0.01	0.0001	86.18	0.01
2,3-Dimethylbutane	0.15	0.0015	86.18	0.13
2-Methylpentane	0.19	0.0019	86.18	0.16
3-Methylpentane	0	0	86.18	0.00
n-Hexane	0.02	0.0002	86.18	0.02
Hexane Plus	0.11	0.0011	86.18	0.09
ROC Mol%	7.67			

Total Mol Wt. ROC C3 to C6+	4.1059	lb/lbmol
At STP 1lb-mol =	379.48	scf
Total lbs of ROC C3 to C6+ per ft3	0.0108	

C.4.2 Gas Analysis (2012)

Client: ERG Op 6085 Ca Santa M Attn: Mr. Phil I Facility: Cat Can Description: GWP Fu Note: GWP An	erating Group t Canyon Road aria, CA 93454 Hosch	SAMPLE ID: Date Sampled: Date Analyzed: Lab Contact:	1206196-1 12/11/12 @ 0830 12/11/12 @ 1535		
6085 Ca Santa M Attn: Mr. Phil Facility: Cat Can Description: GWP Fu Note: GWP An	t Canyon Road aria, CA 93454 Hosch	Date Sampled: Date Analyzed: Lab Contact:	12/11/12 @ 0830 12/11/12 @ 1535		
Santa M Attn: Mr. Phil i Facility: Cat Can Description: GWP Fu Note: GWP An	aria, CA 93454 Hosch	Date Analyzed: Lab Contact:	12/11/12 @ 1535	i II.	
Attn: Mr. Phil I Facility: Cat Can Description: GWP Fu Note: GWP An	Hosch	Lab Contact:			
Facility: Cat Can Description: GWP Fu Note: GWP An	/00		J. Carstens		
Description: GWP Fu Note: GWP An		compressor Meter:	-		
Note: GWP An	el Gas Annee	Pressure:	: 70 ps	ig	
	nual Gas Testing	Temp:	: 58 °F		
Ga	s Analysis by Chr	omatography - ASTM D 1	945/3588		
	S Analysis by Onic	welster		O MOE	
component	mole %	weight %		o/mor	
Oxygen	0.08	0.13		-	
Nitrogen	3.26	4.43			
Carbon Dioxide	3.72	7.94		-	
lydrogen Sulfide	0.01	0.02		-	
Methane	82.29	64.11		.	
Ethane	4.39	6.41		1.119	
Propane	2.92	6.25		0.804	
-Butane	0.68	1.92		0.223	
n-Butane	1.29	3.63		0.406	
neo-Pentane	0.00	0.00		0.000	
-Pentane	0.45	1.58		0.165	
n-Pentane	0.37	1.29		0.134	
2,2-Dimethylbutane	0.05	0.19		0.016	
2,3-Dimethylbutane	0.16	0.66		0.057	
2-Methylpentane	0.22	0.91		0.079	
8-Methylpentane	0.00	0.00		0.000	
n-Hexane	0.00	0.00		0.000	
Hexanes Plus	0.12	0.50		0.051	
fotals	100.0	100.0		3.055	
Specific Gravity, Calculated	0.7109	air = 1			
Compressibility (Z) Factor	0.9970		CHONS V	Veight %	
			Carbon	69.28	
Gross Calorific Value			Hydrogen	20.36	
and the second sec	1105.2		Oxygen	5.90	
3TU/ft° dry	1085.0		Nitrogen	4.43	
3TU/ft ⁻ dry 3TU/ft ³ wet	1000.0		Culfur	0.02	
BTU/ft" dry BTU/ft ³ wet Net Calorific Value	1000.0		Sulfur	0.02	
BTU/ft [°] dry BTU/ft ³ wet Net Calorific Value 3TU/ft ³ dry	1000.5	EPA 'F' Factor	Sulfur	0.02	

 ND: None Detected
 NA: Not Analyzed
 G/MCF: Gallons/Thousand Cubic Feet

 307 ROEMER WAY [SUITE 300] SANTA MARIA [CA 93453] (805)922-4772 [FAX (805)925-3376] oecusa.com

	mol %	mol%/100	MW	MW ROC
Methane	82.29	0.8229	16.044	13.17
Ethane	4.39	0.0439	30.07	1.32
Propane	2.92	0.0292	44.097	1.29
Iso-Butane	0.68	0.0068	58.12	0.40
N-Butan e	1.29	0.0129	58.12	0.75
neo-pentane	0	0	72.15	0.00
i-Pentane	0.45	0.0045	72.15	0.32
n-Pentane	0.37	0.0037	72.15	0.27
2,2-Dimethylbutane	0.05	0.0005	86.18	0.04
2,3-Dimethylbutane	0.16	0.0016	86.18	0.14
2-Methylpentane	0.22	0.0022	86.18	0.19
3-Methylpentane	0	0	86.18	0.00
n-Hexane	0	0	86.18	0.00
Hexane Plus	0.12	0.0012	86.18	0.10
ROC Mol%	6.26			

Total Mol Wt. ROC C3 to C6+	3.4982	lb/lbmol
At STP 1 lb-mol =	379.48	scf
Total lbs of ROC C3 to C6+ per ft3	0.0092	

C.4.3 Gas Analysis (2013)

	ERG Ores	F N V L	20 N	LENIAL	A N D C	0 M P	LIAN	CΕ
Gillent: 1	SOR5 Cat (Canyon Rd			Date Sampled	11/26/13 @	1415	
	Santa Mar	ia CA 93454			Date Sampled	11/27/13 6	1353	
Attn: I	Attn: Phil Hosch					J. Carsten	8	
Facility: V	WH Lease	Eucl Con		Recenture	100	neia		
Description: V	Cat Canyo	on Fuel Gas	Oil Cos and	Mater Comela	Temperature	64	or	
Note: 1	williams r	loiding Annual	oii, Gas and	water sample	remperature			and the second second
		Gas Analysi	s by Chro	matography - A	STM D 1946/3	588		
Component	MW		Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00		0.00	N/A	0.00		-	
Nitrogen	28.01		1.46	N/A	1.87		-	
Hydrogen	2.01		0.00	N/A	0.00		-	
Carbon Dioxide	44.01		7.69	0.85	15.52		-	
Carbon Monoxide	28.01		0.00	0.00	0.00		-	
Methane	16.04		81.82	9.03	60.24			
Ethane	30.07		2.54	0.28	3.50		0.647	
Ethene	28.05		0.00	0.00	0.00		0.000	
Propane	44.10		1.96	0.22	3.97		0.541	
Propene	42.08		0.00	0.00	0.00		0.000	
i-Butane	58.12		0.55	0.06	1.46		0.179	
n-Butane	58.12		1.26	0.14	3.36		0.398	
neo-Pentane			0.00	0.00	0.00		0.000	
i-Pentane	72.15		0.58	0.06	1.91		0.211	
n-Pentane	72.15		0.54	0.06	1.78		0.195	
n-Hexane	86.18		0.09	0.01	0.35		0.037	
Hexanes Plus	86.18		1.52	0.17	6.02		0.640	
Totals	and the second		100.0	10.9	100.0		2.85	
Specific Gravity, Ca	lculated		0.7523	air = 1.0000				
Relative Density, Ca	alculated	Kg/m3	0.9065	air = 1.205 Kg/m3				
Compressibility (Z)	Factor (60	°F, 1ATM)	0.9966					
MW of fuel gas, cal	culated (6	0°F, 1ATM)	21.41			CHONS Carbon	Mole % 36.35	Wt% 67.77
Gross Calorific Valu	е					Hydrogen	60.94	19.07
BTU/ft ³ dry			1100.8			Oxygen	2.27	11.29
BTU/ft ³ wet			1081.6			Nitrogen	0.43	1.87
Net Calorific Value							0.00	0.00
BTU/ft ³ dry			997.1	EPA 'F' Facto	x (60°F, 1ATM)		8585.9	
BTU/ft ³ wet			979.7		SDCF/MMBTU			
Hydrogen Sulfide =	ND	ppm						
 Normalized values 					SDCF:Standard	dry cubic fe	et	
All results reported :	at 60°F an	d 14.696 psia.						
ND: None Detected NA: Not Analyzed G/MCF: Gallons/Thousand Cubic Feel						Cubic Feet		

307 ROEMER WAY [SUITE 300] SANTA MARIA [CA 93453] (805)922-4772 [FAX (805)925-3376] Oecusa.com

	mol %	mol%/100	MW	MW ROC
Methane	81.82	0.8182	16.044	13.09
Ethane	2.54	0.0254	30.07	0.76
Propane	1.96	0.0196	44.097	0.86
Iso-Butane	0.55	0.0055	58.12	0.32
N-Butane	1.26	0.0126	58.12	0.73
neo-pentane	0	0	72.15	0.00
i-Pentane	0.58	0.0058	72.15	0.42
n-Pentane	0.54	0.0054	72.15	0.39
2, 2-Dimethylbutane	0	0	86.18	0.00
2, 3-Dimethylbutane	0	0	86.18	0.00
2-Methylpentane	0	0	86.18	0.00
3-Methylpentane	0	0	86.18	0.00
n-Hexane	0.09	0.0009	86.18	0.08
Hexane Plus	1.52	0.0152	86.18	1.31
ROC Mol%	6.5			

Total Mol Wt. ROC C3 to C6+	4.1119	lb/lbmol
At STP 1lb-mol =	379.48	scf
Total lbs of ROC C3 to C6+ per ft3	0.0108	

2013

2014

C.4.4 Gas Analysis (2014)

Client: ERG Operation	ng Group	SAMPLE ID	: 1404961-1		
6085 Cat Car	iyon Road	Date Sampled	: 10/28/14 @ 1	145	
Santa Maria,	CA 93454	Date Analyzed	: 10/28/14 @ 1	1833	
Attn: Phil Hosch		Lab Contact	: J. Carstens		
Facility: WH Lease		Meter			
Description: Cat Canyon F	uel Gas (CLARK Com	p.) Pressure	: 89	psig	
Note: Williams Holding	Annual Oil, Gas and Water	Sample Temp	: 86	°F	
Gas A	alysis by Chroma	tography - ASTM D 1	945/3588		
Component	Mole %	Weight %		G/MCF	
Oxvgen	1.09	1.55			
Nitrogen	5.49	6.84		· · ·	
Carbon Dioxide	11.48	22.45		-	
lydrogen Sulfide	0.00	0.00		-	
Methane	75.70	53.98			
Ethane	1.45	1.93		0.369	
Propane	1.39	2.73		0.384	
Butane	0.42	1.10		0.139	
n-Butane	1.14	2.95		0.361	
neo-Pentane	0.01	0.02		0.002	
Pentane	0.44	1.41		0.161	
h-Pentane	0.40	1.29		0.146	
2.2-Dimethylbutane	0.04	0.16		0.015	
,3-Dimethyibutane	0.22	0.85		0.080	
-methylpentane	0.26	1.01		0.090	
Herane	0.01	0.02		0.002	
lexanes Plus	0.40	1.52		0.167	
Fotals	100.0	100.0		1.941	
Specific Gravity, Calculated	0.7768 air	= 1			
Compressibility (Z) Factor	0.9970		CHONS	Weight %	
			Carbon	59.06	
Gross Calorific Value			Hydrogen	16.22	
3TU/ft° dry	956.7		Oxygen	17.88	
3TU/ft° wet	940.0		Nitrogen	6.84	
Net Calorific Value			Sulfur	0.00	
STU/ft ³ dry	865 G	EPA 'E' Eactor	(60°E 14TM)	8692.4	
BTU/ft ³ wet	850.5	SDCF/MMRTU	(vo F, 161W)	0002.4	

307 ROEMER WAY |SUITE 300|SANTA MARIA |CA 93453|(805)922-4772 |FAX (805)925-3376 | oecusa.com

	mol %	mol%/100	MW	MW ROC
Methane	75.7	0.757	16.044	12.12
Ethane	1.45	0.0145	30.07	0.44
Propane	1.39	0.0139	44.097	0.61
Iso-Butane	0.42	0.0042	58.12	0.24
N-Butane	1.14	0.0114	58.12	0.66
neo-pentane	0.01	0	72.15	0.00
i-Pentane	0.44	0.0044	72.15	0.32
n-Pentane	0.4	0.004	72.15	0.29
2,2-Dimethylbutane	0.04	0.0004	86.18	0.03
2,3-Dimethylbutane	0.22	0.0022	86.18	0.19
2-Methylpentane	0.26	0.0026	86.18	0.22
3-Methylpentane	0.01	0.0001	86.18	0.01
n-Hexane	0.04	0.0004	86.18	0.03
Hexane Plus	0.4	0.004	86.18	0.34
ROC Mol%	4.77			

Total Mol Wt. ROC C3 to C6+	2.9616	lb/lbmol
At STP 1 lb-mol =	379.48	scf
Total lbs of ROC C3 to C6+ per ft3	0.0078	

D.1 General Information

Permit #	PTO 7053-R9
Facility Name	Bradley Lands/Bradley Consolidated Lease
FID	4103
Company	Greka Oil and Gas
Device ID #	5838
Make	Kaldair
Model	Indair
Max Heat Rating (MMBTU/hr)	12.9
Air Assisted?	unknown
Steam Assisted?	unknown

D.2 Gas Analysis Summary

Gas Information from Analysis								
	1	2	3					
Location of Sample:	unknown	unknown	unknown					
Actual Year of Analysis:	2011	2012	2014					
ROC Mol%	15.28	12.832	13.04					
BTU Content (Btu/scf) HHV, dry, 14.696 psi 60F	1111.7	1042.11	1049					
lb ROC/scf	0.024112536	0.0200	0.0204					
Assumed Control %	98	98	98					
Outlet ROC (ppmv)	3056	2566.4	2608					
Calculated ROC Emission Factor (Ib/MMBtu)	0.433795736	0.38304405	0.38939269					
Gas Flared in Year (scf)	6030000	13593385	1170651					
notes:	data from annual reports	data from annual reports	data from annual reports					

Weighted Average ROC Emission Factor based on flare volume:

0.398

D.3.1 Annual Flare Volume (2011)

Clar FID: PTC Lea: Rep	k Avenue SSID: 02200 04103 0: 07053 se/Location: Bradley Cons orting Year 2011	olidated /	Bradley La	ands Unit/	Bradley 1	/Standard	Payne							
Rep	orting Requirments	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
6.d.				mour	No	H2S incide	nts resulting	in sensor	iounding on	curred in 20	11	NOV	DEC	ANNUAL
7.a.	Volume of oil produced (BBL)	3344	3346	3799	3416	3476	4121	4572	4896	4430	3222	3507	4607	40.000
-	No. of days of oil produced (Days)	31	28	31	30	31	30	31	31	30	31	30	31	365
7.b.	Volume of wastewater through Wemco (BBL)													
-	No. of days water was processed						No	t used in 20	011					
7.c.	Volume of gas burned in Flare (scf)	293.000	237.000	271.000	260,000	625,000	556.000	991.000	496.000	729.000	981 000	347.000	244 000	6 030 000
-	No. of days flare was operated	31	28	31	30	31	30	31	31	30	31	30	244,000	365
7.d.	Volume of gas burned in combustion units								0.				- 51	005
-	No. of days units operated	1												
-	Heater Treater	242.000	246.000	310.000	216,000	200.000	209 000	0	0	0	227 000	188 000	235 446	2 072 446
-	Heater Treater	31	28	31	30	31	30	31	31	30	31	30	31	365
-	OMNI Heater Treater						OMN	not used in	2011					305
	Heater Treater	0	0	0	0	0	0	0	0	0	0	0	0	0
-	Boiler (scf)	198.000	189,000	207.000	442,000	457.000	403,000	381 000	261.000	231.000	271.000	259,000	156,000	2 455 000
	Boiler (days)	31	28	31	30	31	30	31	31	30	31	203,000	31	3,455,000
7.e.	Volume of wastewater through HT/desanders (B					De	esander (ON	AND out of s	ervice in 20	11			51	
-	No. of days water was processed (days)	31	28	31	30	31	30	31	31	30	31	30	21	205
-														305
7.f.	Volume of wastewater from desanders to waster	Volume is Zero. Desprifers were out of service in 2011												
								nation interes	001 01 00111	CONTECTT.				
7.g.	sumps (BBL)				Volu	ume is Zero	Sand reco	very sumps	were out of	service in 2	011			
	No. of days water was processed (days)	0	0	0	0	0	0	0	0	0	0	0	0	T
-	Percentage of total volume of ww processed by	0%	0%	0%	0%	0%	0%	0%	096	0%	0%	0%	0%	-
	, , , , , , , , , , , , , , , , , , , ,			0,1		011	074	0.0	070	070	076	076	070	1
7.h	Max hourly heat input to boiler each month (MM	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1
	Dates heat input exceeded 4.75 MMBtu/hr	none	none	none	none	none	none	none	none	0000	0000	0.00	0.00	1
										none	THOMAS	Tione	110110	1
7.1.	Daily logs with volume and dates of oil shipmen					Information	available in	daily produ	ction reports					1
														1
7.j.	Annual HHV of fuel gas (Btu/scf)	1112	1											
			-											
7.k.	Daily H2S content of fuel gas (ppm)				Daily C	Operator Log	s can be pr	ovided to D	istrict upon r	equest.				1
														1
7.1.	Quarterly H2S content of flare gas (ppm)					See	records (sa	ame as fuel	gas)					1
		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	1
7.m.	Daily fuel gas pressure to CE Natco HTs	8	8	8	8	8	8	8	8	8	8	8	8	1
			A											
7.n.	Crude Oil API gravity (60 F)	13.6	1											
	Crude Oil TVP (psi)	0.49	1											
	Crude Oil Temp (F)	104	1											
7.0.	Dates of H2S breakthrough and concentration (p						See daily o	perator logs	3					1
7.p.	Dates of SulfaTreat change out	Multiple dates	Multiple dates	Multiple dates	Multiple dates	Multiple dates	Multiple dates	Multiple dates	Multiple dates	Multiple dates	Multiple dates	Multiple dates	Multiple dates	7
	Chemical volumes	4,541	4,541	3,200	4,541	3,400	4,700	5,970	3,600	5,600	2,900	6,100	5,400	1
														-
_		-												

D.3.2 Annual Flare Volume (2012)

Clark Ave Stationary Source:	02200
FID:	04103
PTO:	07053-R8 & 13741
Lease/Location:	Bradley Lands / Bradley Consolidated
Reporting Year:	2012

PTO 07073-R	8 Condition 8: Repo	rting]
	Days of Crude/Flare/HT Operations	Produced Crude (bbl)	Trucked Crude (bbl)	WW Processed through Wemco (bbl)	Gas Flared (scf)
Jan	-31	4,027	10,313	0	622,639
Feb	29	3,357	8,437	0	553,506
March	31	3,322	8,673	0	1,798,270
April	30	2,914	9,659	0	997,917
May	31	2,960	7,611	0	1,128,094
June	30	3,299	9,015	0	1,237,394
July	31	4,144	9,545	0	925,476
Aug	31	4,357	9,824	0	1,387,943
Sep	30	3,124	8,892	0	1.343,171
Oct	31	3,315	9,422	0	862,848
Nov .	30	3,896	8,697	0	1,585,937
Dec	31	4,556	10,620	0	1,150,190
Annual	366	43,271	110,708	0	13,593,385

-	Ajax Boiler Fuel Use (scf)	Days of Boiler Operations	HT #1 Fuel Use (scf)	WW Processed through the HT/Desander (bbl)	WW from Desander to WW Tks (bbl)
Jan	3,391,197	31	3,498,287	11,342	7,384
Feb	3,172,410	29	3,272,591	5,612	3,686
March	3,391,197	31	3,498,287	1,468	1,006
April	2,516,049	23	3,385,439	23,373	16,574
May	2,953,623	27	3,498,287	17,717	12,973
June	3,281,803	30	3,385,439	13,437	6,807
July	3,391,197	31	3,498,287	16,214	9.684
Aug	3,391,197	31	3,498,287	0	0
Sep	3,063,016	28	3,385,439	0	0
Oct	3,281,803	30	3,498,287	0	0
Nov	3,281,803	30	3,385,439	0	0
Dec	1,531,508	14	3,498,287	0	0
Annual	36,646,803	335	41,302,358	89,163	58,113

					Dates of H2S I	Breakthrough
	WW Through Sumps (bbl)	Max Heat Input to Boiler (MMBtu/hr)	Crude Shipped off Lease (bbl)	Dates of Crude Shipments	Tower #1	Tower #2
Jan	18,253	4.75	10,313	Multiple Dates	1/4	1/7
Feb	2,787	4.75	8,437	Multiple Dates	2/1,2/14,2/24	2/7
March	28,769	4.75	8,673	Multiple Dates	3/5, 3/16, 3/26	3/10, 3/20
April	1	4.75	9,659	Multiple Dates	4/4, 4/17	
May	53,637	4.75	7,611	Multiple Dates	5/4, 5/13 5/29	5/22
June	12,414	4.75	9,015	Multiple Dates		6/2
July	84,963	4.75	9,545	Multiple Dates	7/31	7/2, 7/8, 7/17
Aug	23,887	4.75	9,824	Multiple Dates		
Sep	7,847	4.75 .	8,892	Multiple Dates	9/5, 9/14	9/5, 9/14
Oct	37,405	4.75	9,422	Multiple Dates	10/1	
Nov	18,583	4.75	8,697	Multiple Dates	11/13	
Dec	85,306	4.75	10,620	Multiple Dates	12/3, 12/31	12/10, 12/19
Annual	373,851		110,708			

D.3.3 Annual Flare Volume (2014)

Greka Oil Gas

Page 1 of 4

3/6/2015

1

Clark Ave Stationary Source:	02200
FID:	04103
PTO:	07053-R8
Lease/Location:	Bradley Lands / Bradley Consolidated
Reporting Year:	2014

PTO 07053-R9 Condition 8: Reporting

	Crude Production Days	Produced Crude (bbl)	Shipped Crude (bbl)	Nos. of days crude was shipped	WW Processed through Wemco (bbl)	Days WW was Processed through Wemco (days)
Jan	31	4,041	11,364	28	0	0
Feb	28	3,581	12,007	26	0	0
March	31	4,029	10,980	25	0	0
April	30	3,952	10,800	22	0	0
May	31	4,035	12,662	24	0	0
June	30	3,372	11,952	29	0	0
July	31	4,626	13,676	24	0	0
Aug	31	3,475	11,600	27	0	0
Sep	30	3,855	11,107	22	0	0
Oct	31	3,867	13,000	27	0	0
Nov	30	4,066	12,710	26	0	0
Dec	31	4,464	13,171	27	0	0
Annual	365	47,363	145,027	307	0	0

	Data for 2014 In Service Fuel Burning Units								
	Flare (scf/mo)	Flare (days of use/mo)	Ajax Boiler Fuel Use (scf)	Days of Boiler Operations/mo	HT #1 Fuel Use (scf)	Days of HT #1 Operations/mo			
Jan	78,472	31	116,449	31	0	0			
Feb	118,325	28	40,603	28	34,894	28			
March	131,806	31	76,387	31	15,450	31			
April	55,008	30	0	0	87,169	30			
May	65,996	31	77,737	31	0	0			
June	102,113	30	25,940	30	51,391	30			
July	145,710	31	51,667	31	11,431	31			
Aug	57,387	31	103,221	31	0	0			
Sep	242,268	30	51,135	30	30,450	30			
Oct	101,413	31	52,887	31	20,910	31			
Nov	26,731	30	37,956	30	29,821	30			
Dec	45,422	31	37,390	31	24,184	31			
Annual	1,170,651	365	671,372	335	305,700	272			

D.4.1 Gas Analysis (2011)

•••	$\hat{\Box}$	ZALCO LAE Analytical & C	30R, Consu	ATORIES, IN ting Services	NC.		
5		4309 Armour Avenue Bakersfield, California	93308		· .	(661) 395 FAX (661) 395	-0539 -3069
							-
	Greka Energy,	Santa Maria			Laboratory Mo.	1101002 01	
	P. O. Box 548	9			Date Received	1101083-01	
	Santa Maria	CA 93456			Date Analyzed:	01/07/11	
					Purchase Orden	01/0//11	
	Attention:	Laura Nuzzo			r urchase Order:		
	Sample Descrip	tion: 3 ISLAND FUEL G Sampled: 01/06/201	AS HEA 1 @ 11:17	TER TREATER AM by E. Elliott	Test Code:	1635	
	Chromate	graphic Analysis ASTM	D-1045	02 40736 0 2500 00			
		graphic rulary sis, ASTI	1 D-1945	03, ASIM D-3588-98,	GPA 2145-94, GI	PA 2261-00	
	Constituent:	Mole %		Weight %	Gas Liquids, Gallons per	CHONS%	
	Oxygen	5 374			1000 cubic feet	Carbon, C	
	Nitrogen	21.857		6.29		54.84	
	0	21.057		22.38			
	Carbon Dioxide	. 1886				Hydrogen, H	
	Carbon Monox	ide 0.000		3.03		14.29	
	Hydrogen Sulfi	de 0.000		0.00			
	Methane	51 242		0.00		Oxygen, O	
	Ethane	4 360		30.05		8.49	
	Propane	5.625		4.79			
	IsoButane	1.069		9.07	1.55	Nitrogen, N	
	n-Butane	2 220		2.27	0.35	22.38	
	IsoPentane	5.529		7.07	1.05		
	n-Pentana	1.494		3.94	0.55	Sulfur S	
	Hevanest	1.479		3.90	0.53	0.00	
	110Adiles+	2.285		7.20	0.98	0.00	
	Totals:	100.00					
	a otaria.	100.001		100.00	5.01	100.00	
	Gas Properties of	alculated at STP dear	aac E	(0.00			
	Measurement B	ase Pressure at STP	cio I.	60.00		H/C Ratio:	
		picture of the pictur	72.04	14.090		0.26	
	Gross Btu/Cu.Ft.,	Dry Gas HHV 11	11.7	Relative Gas Density:	Ideal gas:	0.0115	
	Ideal Gross Btu/L	.b. Dry Gas HHV 153	61.6	Specific Gravity, (Air	= 1) Real cas	0.9445	
	Net Btu/Cu.Ft.	Dry Gas LHV 10	13.7	Real Gas Density, Lb/	Cu.Ft	0.9477	
	Ideal Net Btu/Lb	Dry Gas LHV 140	08.0	Specific Volume, Cu F	t/Lb	0.07237	
	Gross Btu/Cu.Ft.,	water saturated 10	88.0	Compressibility '2'		13.8179	
				stapressionity, 2		0.9961	
				G	ross or HHV	Nator I III/	
		"F" F	actor, I	SCF/MMBtu at 60F.	8665.0	OSO2 2	
	1	"F" F	actor, I	SCF/MMBtu at 68F	8797.0	9647.0	
_		("F" F	actor, I	SCF/MMBtu at 70F	8830.4	2047.U	
	Sugar Alm	WI day and "FC"	Factor, D	SCF CO2/MMBtu60F	1128 7	9083.7	
6	Kobert Cortez, La	boratory Manager . "FC"	Factor, D	SCF CO2/MMBtu68F	1145.0	1237.7	
10	8	10			1140.9	1200.6	
1							

This report is furnished for the exclusive use of our Customer and applies only to the samples tested. Zaka is not responsible for report alteration or detachment.

	mol %	mol%/100	MW	MW ROC
Methane	51.242	0.51242	16.044	8.20
Ethane	4.36	0.0436	30.07	1.31
Propane	5.625	0.05625	44.097	2.48
Iso-Butane	1.068	0.01068	58.12	0.62
N-Butane	3.329	0.03329	58.12	1.93
neo-pentane	0	0	72.15	0.00
i-Pentane	1.494	0.01494	72.15	1.08
n-Pentane	1.479	0.01479	72.15	1.07
2,2-Dimethylbutane	0	0	86.18	0.00
2,3-Dimethylbutane	0	0	86.18	0.00
2-Methylpentane	0	0	86.18	0.00
3-Methylpentane	0	0	86.18	0.00
n-Hexane	0	0	86.18	0.00
Hexane Plus	2.285	0.02285	86.18	1.97
ROC Mol%	15.28			

Total Mol Wt. ROC C3 to C6+	9.1502	lb/lbmol
At STP 1lb-mol =	379.48	scf
Total lbs of ROC C3 to C6+ perft3	0.0241	

2011

D.4.2 Gas Analysis (2012)

	ZALCO LABO 4309 Armour A 2186 Bastman A	RATORIES, venue, Bakerst venue, Suite I	INC. Seld, CA 93308 (66 03, Venturi, CA 93	i) 395-0539 (1003 (805) 47	7AX (661) 395-3069 www. 7-0114 FAX (805) 477-01	zalcolabs.com		
Greka Energy, Sants P. O. Box 5489	Maria				Laboratory No:	1212042-01		
Santa Maria	CA 93456				Date Analyzed:	12/04/12 12/06/12		
Attention:	Danielle Meyers							
Sample Description:	3 Island Heater T Sampled: 12/4/2	Freater # 1 Fue 012 @ 9:35:0	l Gas 10 AM by Eric Ellic	HE				
Chiromata	graphic Analytic	ASTMD-194	5-037ASTM 0-35	88-98, GPA 2	145:09 ASTM D017451	R Protection (ST	45.18-192827	
					GPM	1991 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 -	(#1381) (2022)	
Constituent:	Mole %		Weight %	GPM	Fractions	CH	IONS%	
Orume	c (80)					Car	rbon, C	
Nitronen .	5.407		6.337	(Gailons per			54.10	
. en ogen	14.860	,	15.245	1000.000				
Carbon Dioxida	0.122			cubic feet)		Hy	drogen, H	
Carbon Monoxide	9.132		14.718				13.62	
Hydrogen Sulfide	0.000		0.000					
Methana	\$1,826		0.000			Ox	ygen, O	
Ethana	3 0.43		31.624				17.04	
Propage	5 170		4.34Z					
IsoButane	0.015		8.304	1.424	 (C3C3) = 	1.424 Nib	rogen, N	
n-Butana	2.266		1.549	0.299			15.25	
IsoPentane	1.025		5.887	. 0.871	(C3_C4)=	2.595		
n-Pentano	0.916		2.700	0.374	(02, 00)	Sul	fur, S	
Hexanes	2.031		5.408	0.331	(C3C3)=	3.299	0.00	
Totals:	100.00		100.00	4.173	(C3C0+)=	4.173	100.00	
Flammable Gases:				20.601			100.00	
Gas Properties calcula	ted @ STP: deg	mes F.		70.001				
Measurement Base Pr	essure @ STP:	psia		14.696		C Patier 0 7	.	
						- Ratio: 0.2		
Car State	Dry		Wet					
Gas State	Btu / Cu. Ft	Btu / Ib	Btu / Cu. Ft					
Net Ideal Gas	1038.01	14425.64	1019.95					
Cratt. Real Cas	945.20	13135.77	928.75					
Net. Real Gas	042.01		1023.97					
	240.93		93ZA2					
Relativa Gas Densites /	Air=13 Ideals	0.0428	_					
Santific Gravity, [Alissi	1) Peel ent	0.9428		Factor, DSC	F/MMBtu @ 60P	8646.7	9495.8	
Real Gas Density Lb/	h Fr.	0.9900	*7	Factor, DSC	F/MMBtu @ 68F	8778.4	9540.4	
Specific Volume, Cu Fr	/Lb:	13 8476		ractor, DSC	PMMBtu @ 70P	8811.7	9677.0	
Relative Liquid Density	@ 60F/60F:	0.4811	10	C* Factor, DS	CF CO2/MMBbi @ 60P	1185.7	1302.1	
Compressibility, 'z':		0.9961	,	~ rector, D2	CL COTWINIBE @ 085.	1203.8	1322.0	
Fuel kg ptr kg-mole Me	lecular wt avg	27.306						

ANDA: OTITE Page

	mol %	mol%/100	MW	MW ROC
Methane	53.826	0.53826	16.044	8.61
Ethane	3.943	0.03943	30.07	1.19
Propane	5.179	0.05179	44.097	2.28
Iso-Butane	0.915	0.00915	58.12	0.53
N-Butane	2.766	0.02766	58.12	1.61
neo-pentane	0	0	72.15	0.00
i-Pentane	1.025	0.01025	72.15	0.74
n-Pentane	0.916	0.00916	72.15	0.66
2,2-Dimethylbutane	0	0	86.18	0.00
2,3-Dimethylbutane	0	0	86.18	0.00
2-Methylpentane	0	0	86.18	0.00
3-Methylpentane	0	0	86.18	0.00
n-Hexane	0	0	86.18	0.00
Hexane Plus	2.031	0.02031	86.18	1.75
ROC Mol%	12.832			

Total Mol Wt. ROC C3 to C6+	7.5739	lb/lbmol
At STP 1 lb-mol =	379.48	scf
Total lbs of ROC C3 to C6+ per ft3	0.0200	

2012

2014

D.4.3 Gas Analysis (2014)

(0 E C	
OILFIELD ENVIRONME	NTAL & COMPLIANCE.	INC.
Client: Greka Energy	SAMPLE ID: 1405711-1	
2617 E. Clark Road	Date Sampled: 12/19/14 @ 1305	
Santa Maria, CA 93454	Date Analyzed: 12/22/14 @ 1414	
Attn: Joseph Diaz	Lab Contact: J. Carstens	
Escility: Bradley 3 Island	Meter: -	
Description: Fuel Gas - Combustion Units	Pressure: 14 ps	ia
Note: Oil & Gas Testing	Temp: 67 ⁶ F	Ť.
Gas Analysis by Chro	omatography - ASTM D 1945/3588	
Component Mole %	. Weight %	G/MCF
01/0000 4.36	5.15	
Nitrogen 17.04	17.63	
Carbon Dioxide 7.54	12.26	-
Hydrogen Sulfide 0.00	0.00	-
Methane 54.23	32.13	-
Ethane 3.78	4.20	0.964
Propane 5.02	8.1/	1.384
-Butane 0.94	2.03	0.809
Pottane 2.09	0.00	0.000
Pentane 1.11	2.95	0.405
n-Pentane 1.13	3.02	0.410
2.2-Dimethylbutane 0.11	0.35	0.040
2,3-Dimethylbutane 0.50	1,58	0.180
2-Methylpentane 0.76	2.43	0.277
3-Methylpentane 0.08	0.25	0.028
n-Hexane 0.00	0.00	0.000
Hexanes Plus 0.55	1.75	0.230
Totals 100.0	100.0	5.124
Specific Gravity, Calculated 0.9349	air = 1	
Compressibility (Z) Factor 0.9961	CHONS V	/eight %
	Carbon	54.44
Gross Calorific Value	Hydrogen	13.87
BTU/ft* dry 1049.0	Oxygen	14.06
BTU/ft" wet 1030.8	Nitrogen	17.63
Net Calorific Value	Sulur	0.00
BTI 1/# ³ dry 955.3	EPA 'F' Factor (60°F, 1ATM)	8797.2
BTU/ft ³ wet 938.7	SDCF/MMBTU	
Hydrogen Sulfide = 28 ppm		
All results reported at 60°F and 14.696 psia.		
ND: None Detected NA: Not Applyzed	G/MCF: Gallons/Thousand Cubic F	eet

307 ROEMER WAY | SUITE 300 | SANTA MARIA | CA 93454 | (805) 922-4772 | FAX (805) 925-3376

	mol %	mol%/100	MW	MW ROC
Methane	54.23	0.5423	16.044	8.68
Ethane	3.78	0.0378	30.07	1.14
Propane	5.02	0.0502	44.097	2.21
Iso-Butane	0.94	0.0094	58.12	0.55
N-Butane	2.84	0.0284	58.12	1.65
neo-pentane	0	0	72.15	0.00
i-Pentane	1.11	0.0111	72.15	0.80
n-Pentane	1.13	0.0113	72.15	0.82
2,2-Dimethylbutane	0.11	0.0011	86.18	0.09
2,3-Dimethylbutane	0.5	0.005	86.18	0.43
2-Methylpentane	0.76	0.0076	86.18	0.65
3-Methylpentane	0.08	0.0008	86.18	0.07
n-Hexane	0	0	86.18	0.00
Hexane Plus	0.55	0.0055	86.18	0.47
ROC Mol%	13.04			

Total Mol Wt. ROC C3 to C6+	7.7504	lb/lbmol
At STP 1 lb-mol =	379.48	scf
Total lbs of ROC C3 to C6+ per ft3	0.0204	

E.1 General Information

Permit #	8096-R9
Facility Name	Morganti Lease
FID	3303
Company	Greka Oil and Gas
Device ID #	8428

Make	Unknown
Model	Unknown
Max Heat Rating (MMBTU/hr)	5.625
Air Assisted?	no
Steam Assisted?	no
Pilot Gas type	produced gas
Ignition System Type	continuous

E.2 Gas Analysis Summary

Gas Information from Analysis							
	1	2	3				
Location of Sample:	Flare inlet	Flare inlet	Flare Inlet				
Actual Year of Analysis:	2011	2012	2014				
ROC Mol%	0.357	0.408	3.16				
BTU Content (Btu/scf) HHV, dry, 14.73 psi 60F	727.71	631.72	826.1				
lb ROC/scf	0.0005	0.0007	0.0047				
Assumed Control %	98	98	98				
Outlet ROC (ppmv)	71.4	81.6	632				
Calculated ROC Emission Factor (lb/MMBtu)	0.015	0.022	0.114				
Gas Flared in Year (scf)	18521000	8433197	16390270				
notes:	none	none	none				

Weighted Average ROC Emission Factor based on flare volume:	0.054

E.3.1 Annual Flare Volume (2011)

04630
03303
08096
Casmalia Morganti
2011

Rep	orting Year: 2011													
Rep	orting Requirements	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
5.8.	Monthly fuel use Boiler (scf)	797,000	656,000	596,000	593,000	661,000	593,000	1,274,000	1.314.000	1.313.000	1.090.000	1.374.000	530 000	10 791 000
	No. of days in use (days)	31	28	31	30	31	30	31	31	30	31	30	31	365
	Average daily fuel use (scf)	25,710	23,429	19,226	19,767	21,323	19,767	41,097	42,387	43,767	35,161	45,800	17.097	29.564
5.b.		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
	Oil through 5000 BBL Wash Tank (BBL)	5,029	4,092	1,511	0	0	0	0	0	0	0	0	0	10.632
	No. of days that oil was produced	31	28	31	30	31	30	31	31	30	31	30	31	365
		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
5.c.	Monthly produced gas production	0	0	0	0	0	0	0	0	0	0	0	0	0
	Days of gas production	0	0	0	0	0	0	0	0	0	0	0	0	0
-		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
5.d,	Monthly diluent (LCR) use	574	1,073	1,150	974	1,132	809	1,107	985	978	1,167	990	959	11,898
1	Days of diluent use	31	28	31	30	31	30	31	31	30	31	30	31	365
-		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
5.e.	Volumes of Oil Shipments (BBL)	5,029	4,092	5,203	4,306	4,163	4,539	4,478	4,286	3,815	4,357	4,456	4,352	53,076
	Dates of Oil Shipments	12/mo	12/mo	12/mo	12/mo	12/mo	12/mo	12/mo	12/mo	12/mo	12/mo	12/mo	12/mo	
-	No. of Loads on each date	1	1	1	1	1	1	1	1	1	1	1	1	1
-	Volumes of Diluent Deliveries (BBL)	574	1,073	1,150	974	1,132	809	1,124	979	982	1,130	977	979	11,883
-	No. of Deliveries on each date	7	7	7	7	7	7	7	6	6	7	6	6	
-		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
5.1.	Volume of Gas Flared (SCF)	1,481,000	1,211,000	1,187,000	1,036,000	1,350,000	837,000	2,088,000	1,689,000	1,890,000	2,965,000	2,465,000	322,000	18,521,000
-	No of Days in Operation	31	28	31	30	31	30	31	31	30	31	30	31	365
50	ADI Gravity of grade (@SOE)		1											
5.g.	TVP of enviro (col)	12												
-	Crude oil storage temp (E)	100												
-	Annual HHV/ (Rivier)	135												
-	Anida HITY (Brusci)	1,201	1											
5h	API Gravity of diluant (LCR) (@60E)	25	1											
0.0.	TVP of diluent (LCR) (osi)	0	1											
-			1											
51	Weekly H2S					Daily	Onarolor P	onode ougile	able upon re	auget				
	Annual H2S (nom)	660	1			Daily	Operator R	epons avair	able upon re	quest.				
-			1											
5.1.	Dates of H2S scrubbing solution change	1/month	1/month	1/month	1/month	1/month	1/month	1/month	1/month	1/month	1/month	1/month	1/month	1
	Volume of solution changed out (gali)	1 200	1 200	1 200	1 200	1 200	1 200	1 200	1 200	1 200	1/month	1/1000	1/month	4
-		1,1200	1,200	1,200	1,200	1,200	1,200	1.200	1,200	1,200	1,200	1,200	1,200	1
5.K.	Flare Pilot Observations						Observ	ed daily by 6	Operator					
-									operator					
5.1.	Monthly peak fuel line pressure to Miura boiler						Out	of Service in	2011					
5.m.	Miura boiler Fuel Use demonstration						Out	of Service in	2011					
5.n.	Type of liquid in each tank	Cr	ude	LCR (lig	ht crude)	Crude	ANator	1						
-	Temperature of liquid	Crude	135 F	LCR	61 F	Wash	005	1						
	Max vapor pressure of tank content	Giude	0.07.05	LOIL	0.06 psi	ridon	005	1						
-	Date of degassing of each tank			1	0.00 001		No Deg	assing event	is in 2011					
								and a second	o bi Loiri					
5.0.	Days Emerg Pit contained waste						F	Rainwater Or	nly					
5.p.	No. of times pigging occurred each month	Pigging sc	rubber is in	operation a	s part of nor	mal gas cor	nveyance s	ystem. Liqu	ids are rem	oved by vac	uum truck.			
5.g.	Gallons of solvent	85	1											
-	Gallons of coatings	6												
-			1											

E.3.2 Annual Flare Volume (2012)

	Dates of Oil Shipments	Number of Crude Shipments/ month	Flared Gas (scf)
Jan	Multiple Dates	31	364,220
Feb	Multiple Dates	24	647,224
March	Multiple Dates	29	700,296
April	Multiple Dates	24	522,931
May	Multiple Dates	29	700,983
June	Multiple Dates	28	841,949
July	Multiple Dates	42	799,803
Aug	Multiple Dates	42	710,391
Sep	Multiple Dates	39	571,327
Oct	Multiple Dates	43	887,686
Nov	Multiple Dates	40	725,076
Dec	Multiple Dates	36	961,311
Annual		406	8,433,197

	Weekly H2S of Fuel Gas (ppm)							
	1st	7th	14th	21st	28st			
Ian	500	200	500	600	100			
Feb	200	200	500	0	75			
March	50	100	0	100	500			
Anril	250	25	50	50	100			
May	500	50	100	375	100			
June	150	200	100	200	600			
July	200	550	100	250	100			
Ang	200	0	175	50	200			
Sen	250	50	300	100	250			
Oct	500	175	550	150	50			
Nov	225	0	150	50	0			
Dec	250	0	500	150	200			

2/27/2013

a

E.3.3 Annual Flare Volume (2014)

04630
03303
08096 - R8
Morganti Lease
2014

	Dates of Oil Shipments	Number of Crude Shipments/month	Flared Gas (scf)	Flare Operation Days
Jan		51	1,062,202	30
Feb]	42	799,624	28
Mar]	53	998,779	31
Apr]	52	1,461,655	30
May]	51	1,456,908	27
Jun	See attached	51	1,345,994	27
Jul	records	51	1,260,660	31
Aug]	47	2,038,993	31
Sep]	47	1,654,327	30
Oct]	55	2,233,608	31
Nov]	48	836,175	30
Dec	1	47	1,241,344	31
Total			16,390,270	

	Weekly H2S of Fuel Gas (ppm)						
	Ist	7th	14th	21st	28st		
Jan	500	700	200	200	280		
Feb	350	100	100	150	300		
Mar	300	100	100	100	200		
Apr	0	125	200	200	100		
May	100	200	300	100	200		
Jun	300	300	100	150	275		
Jul	200	200	400	150	0		
Aug	0	100	250	100	100		
Sep	300	450	50	150	300		
Oct	400	575	50	100	250		
Nov	425	100	300	100	350		
Dec	100	150	100	450	325		

E.4.1 Gas Analysis (2011)

		ZALCO LABO 4309 Armour A 1103 East Clark	RATORIES, venue, Bakers Avenue, Suit	INC. field, CA 93308 (6 e F-5, Santa Maria,	61) 395-0539 I CA 93455 (80	AX (661) 395-3069 5) 938-5341 FAX (80	www.zalcolabs/	20171	2011
1	Creks Foorgy Santa	Maria							
()	P. O. Box 5489					Laboratory No: Data Passiwadi	111241	-03	
	Santa Maria	CA 93456				Date Analyzed:	12/29/1		
	Attention:	Laura Nuzzo							
	Sample Description:	CASMALIA MO Sampled: 12/27	ORGANTI FL /2011 @ 10:0	ARE #2202 0 AM by Client					
		т	OTAL SULF	UR ANALYSIS, /	STM D3246.	GPA-B16/D4810	alian and an an	9019073	
	Constituent:		Result	Unite				And a state of the	
	Hydrogen Sulfide Total Sulfur		660 40	ppm grs S/100 SCF					
	Chromatog	raphic Analysis,	ASTM D-19	45-03, ASTM D-3	588-98 GPA 2	145-94 GPA 2261-0	0.00		
							GPM		
	Constituent:	Mole %		Weight %	GPM	Fra	ctions	CHONS%	
	Oxygen .	0.306		0.62				Carbon, C	
	Nitrogen	1.941		2.21				49.09	
	-			2.21				Hydrogen, H	
	Carbon Dioxide	27.994		50.10				11.66	
	Carbon Monoxide	0.000		0.00					
	Hydrogen Sulfide	0.068	>	0.09				Oxygen, O	
	Methane	67.392	•	43.97				36.95	
-	Ethane	1.850		2.26					
()	Propane	0.156		0.28	0.04	(C3	.C3) = 0.04	Nitrogen, N	
~	IsoButane	0.076		0.18	0.02		-	2.21	
) -	n-Butane	0.034		0.08	0.01	(C3	C4)= 0.08		
-	IsoPentane	0.013		0.04	0.00			Sulfur, S	
	n-Pentane	0.008		0.02	0.00	(C3	C5) = 0.09	0.09	
	Hexanes	0.070	of the other designed where	0.25	0.03	(C3C	(6+) = 0.12		
	Totals:	100.00		100.00	0.12		0.33	100.00	
	Flammable Gases:				69,601				
	Gas Properties calcula	ted @STP: deg	rees F.		60				
	Measurement Base Pre	ssure @ STP:	psia		14.696		H/C Ratio	: 0.24	
		Dry		Saturated					
	Gas State	Btu / Cu. Ft	Btu / lb	Btu / Cu. Ft					
	Gross, Ideal Gas	725.59	11197.11	712.96					
	Net, Ideal Gas	654.06	10093.15	642.68					
	Gross, Real Gas	727.71		715.05					
	Net, Real Gas	655.97		644.56					
	Relative Gas Density; [A Specific Gravity, [Ai=1] Real Gas Density, Lb/C Specific Volume, Cu.Ft. Relative Liquid Density Compressibility, 'z':	uir=1] Ideal:] Real gas: u.Ft.: (Lb: @ 60F/60F:	0.8491 0.8511 0.0650 15.3866 0.4568 0.9971		"F" Factor, DS("F" Factor, DS("F" Factor, DS("FC" Factor, D "FC" Factor, D	CF/MMBtu @ 60F CF/MMBtu @ 68F CF/MMBtu @ 70F SCF CO2/MMBtu @ SCF CO2/MMBtu @	8876 9011 9046 60F 1386 68F 1407	7 9847.6 9 9997.6 1 10035.6 3 1537.9 4 1561.3	

Compressibility, 2: 0.971 Fuel Rg per kg-mole Molecular wt avg GPM: Gallons per 1000 cubic feet Catolic Const. Laboratory Discharge generation of the const. Activity Const. Laboratory Discharge generation of the const.

	mol %	mol%/100	MW	MW ROC
Methane	67.392	0.67392	16.044	10.79
Ethane	1.85	0.0185	30.07	0.56
Propane	0.156	0.00156	44.097	0.07
lso-Butane	0.076	0.00076	58.12	0.04
N-Butane	0.034	0.00034	58.12	0.02
neo-pentane	0	0	72.15	0.00
i-Pentane	0.013	0.00013	72.15	0.01
n-Pentane	0.008	0.00008	72.15	0.01
2,2-Dimethylbutane	0	0	86.18	0.00
2,3-Dimethylbutane	0	0	86.18	0.00
2-Methylpentane	0	0	86.18	0.00
3-Methylpentane	0	0	86.18	0.00
n-Hexane	0.07	0.0007	86.18	0.06
Hexane Plus	0	0	86.18	0.00
ROC Mol%	0.357			

Total Mol Wt. ROC C3 to C6+	0.2082	lb/Ibmol
At STP 1 lb-mol =	379.48	scf
Total lbs of ROC C3 to C6+ per ft3	0.0005	

E.4.2 Gas Analysis (2012)

to do on do servicio da da	100 Contractor 200								2012
		Ċ				a			
		ZALCO LABORAT 4309 Armour Avenue 2186 Eastman Avenue	ORIES, INC , Bakersfield e, Suite 103,	, CA 93308 (661) : Ventura, CA 9300	395-0539 FAX (3 (805) 477-0114	561) 395-3069 www.zało 4 Fax (805) 477-0125	olabs.com		
	Greka Energy, Santa P. O. Box 5489 Santa Maria	Maria CA 93456			La Da Da	te Received: 1 te Analyzed: 1	211013-01 1/01/12 1/02/12	:	
	Attention:	Danielle Meyers							
	Sample Description:	Casmalia Flare Mete Sampled: 11/1/2012	a # 2202 @ 12:40:001	PM by Eric Elliott					
			Chromatogra	aphic Analysis, AS	TMID-1945-03	ASTM D-3246-11		了这次"非常	
	Constituent:		Result	Units					
	Sulfur Total Sulfur		150	ppmv					
	Chromate	graphic Analysis AS	TM D-1945-0	03/ASTM D3588	-98 GPA 2145-	19. ASTM D432461114+	te in the second se		
	Constituent:	Mole %		Weight %	GPM	Fractions	c	HONS%	
		0.202		0.464	(Callerat not		C	arbon, C 44.28	
	Oxygen Nitrogen	2.375		2.454	(Galions per 1000.000 cubic feet)		ŀ	lydrogen, H	
	Carbon Dioxide	36.936		59.963				9.17	
	Carbon Monoxide	0.000		0.000				and a second	
	Hydrogen Sulfide	0.018		34.632		×		44.07	
	Ethane	1.348		1.495					
	Propane	0.132		0.214	0.036	(C3C3) =	0.036 1	litrogen, N	
	IsoButane	0.077		0.165	0.025			2.45	
	n-Butane	0.033		. 0.070	0.010	(C3C4) =	0.072	without P	
	IsoPentane	0.011		0.030	0.004	(C3 (C5) =	0.078	0.02	
	n-Pentane	0.006		0.473	0.064	(C3C6+) =	0.142	0.02	
	Totals:	100.00	and the second second second	100.00	0.142	and the second states of the	0.328	100.00	
	Flammable Gases:				60.277				
	Gas Properties calcu	lated @ STP: degre	es F.		14.696	1	I/C Ratio: (0.21	
	measurement base i	ressure ig over p							
		Dry		Wet					
	Gas State	Btu / Cu. Ft	Btu / lb	Btu / Cu. Ft					
	Gross, Ideal Gas	629.70	8814.69	618.74					
	Net, Ideal Gas	507.00	7946.21	620.72					
	Net Real Gas	569.48		559.57					
	(ing room one								
	Relative Gas Density Specific Gravity, [Ai Real Gas Density, L Specific Volume, Cu Relative Liquid Dens Compressibility, 'z': Fuel kg per kg-mole	; [Air=1] Ideal: [=1] Real gas: WCu.PL: .Ft.7Lb: ity @ 60F/60F: Molecular wt avg	0.9360 0.9385 0.0717 13.9534 0.5050 0.9968 27.103		"F* Factor, DSC "F* Factor, DSC "F" Factor, DSC "FC" Factor, DS "FC" Factor, DS "FC" Factor, DS	F/MMBtu @ 60F F/MMBtu @ 68F F/MMBtu @ 70F ICF CO2/MMBtu @ 60F ICF CO2/MMBtu @ 68F	9075 9213 9248 1588.3 1612.5	10067.0 10220.3 10259.2 1761.9 1788.8	

	mol %	mol%/100	MW	MW ROC
Methane	58.522	0.58522	16.044	9.37
Ethane	1.348	0.01348	30.07	0.41
Propane	0.132	0.00132	44.097	0.06
Iso-Butane	0.077	0.00077	58.12	0.04
N-Butane	0.033	0.00033	58.12	0.02
neo-pentane	0	0	72.15	0.00
i-Pentane	0.011	0.00011	72.15	0.01
n-Pentane	0.006	0.00006	72.15	0.00
2,2-Dimethylbutane	0	0	86.18	0.00
2,3-Dimethylbutane	0	0	86.18	0.00
2-Methylpentane	0	0	86.18	0.00
3-Methylpentane	0	0	86.18	0.00
n-Hexane	0.149	0.00149	86.18	0.13
Hexane Plus	0	0	86.18	0.00
ROC Mol%	0.408			

Total Mol Wt. ROC C3 to C6+	0.2628	lb/lbmol
At STP 1lb-mol =	379.48	scf
Total lbs of ROC C3 to C6+ per ft3	0.0007	

E.4.3 Gas Analysis (2014)

OILFIELD ENVIRONMENTAL & COMPLIANCE, INC. 2014

Client: Greka Energy 2617 E. Clark Road Santa Maria, CA 93454	SAMPLE ID: Date Sampled: Date Analyzed:	1405681-3 12/18/14 @ 12/18/14 @	0945	
Facility: Casmalia Description: Casmalia Flare Gas Note: Oil & Gas Testing	Lab Contact: Meter: Pressure: Temp:	J. Carstens - < 5.0 42	psig °F	

Gas Analysis by Chromatography - ASTM D 1945/3588							
Component	Mole %	Weight %	G/MCF				
Oxygen	0.13	0.16					
Nitrogen	1.25	1.40	•				
Carbon Dioxide	25.73	45 11	-				
Hydrogen Sulfide	0.05	0.07	-				
Methane	66.82	42 71					
Ethane	2.86	3.42	0 729				
Propane	1.46	2.56	0.720				
i-Butane	0.29	0.67	0.402				
n-Butane	0.64	1.49	0.035				
neo-Pentane	0.00	0.00	0.000				
i-Pentane	0.22	0.63	0.081				
n-Pentane	0.23	0.67	0.084				
2,2-Dimethylbutane	0.02	0.07	0.007				
2,3-Dimethylbutane	0.08	0.27	0.029				
2-Methylpentane	0.12	0.42	0.045				
3-Methylpentane	0.00	0.00	0.000				
n-Hexane	0.01	0.04	0.005				
Hexanes Plus	0.09	0.29	0.036				
Totals	100.0	100.0	1.713				
Specific Gravity, Calculated	0.8665 air = 1						
Compressibility (Z) Factor	0.9967	CHONS	Weight %				
		Carbon	52.91				
Gross Calorific Value		Hydrogen	12.67				
BTU/ft ³ dry	826.1	Oxvgen	32.95				
BTU/ft ³ wet	811.8	Nitrogen	1.40				
		Sulfur	0.07				
Net Calorific Value							
BTU/ft ³ dry	746.8	EPA 'F' Factor (60°F, 1ATM)	8834.2				
BTU/ft ³ wet	733.8	SDCF/MMBTU	0004.2				
Hydrogen Sulfide = 490 ppm							
All results reported at 60°F an	d 14.696 psia.						
ND: None Detected	NA: Not Analyzed	G/MCF: Gallons/Thousand Cub	ic Feet				

307 ROEMER WAY | SUITE 300 | SANTA MARIA | CA 93454 | (805) 922-4772 | FAX (805) 925-3376

	mol %	mol%/100	MW	MW ROC
Methane	66.82	0.6682	16.044	10.69
Ethane	2.86	0.0286	30.07	0.86
Propane	1.46	0.0146	44.097	0.64
Iso-Butane	0.29	0.0029	58.12	0.17
N-Butane	0.64	0.0064	58.12	0.37
neo-pentane	0	0	72.15	0.00
i-Pentane	0.22	0.0022	72.15	0.16
n-Pentane	0.23	0.0023	72.15	0.17
2,2-Dimethylbutane	0.02	0.0002	86.18	0.02
2,3-Dimethylbutane	0.08	0.0008	86.18	0.07
2-Methylpentane	0.12	0.0012	86.18	0.10
3-Methylpentane	0	0	86.18	0.00
n-Hexane	0.01	0.0001	86.18	0.01
Hexane Plus	0.09	0.0009	86.18	0.08
ROC Mol%	3.16			

Total Mol Wt. ROC C3 to C6+	1.7848	lb/lbmol
At STP 1lb-mol =	379.48	scf
Total lbs of ROC C3 to C6+ per ft3	0.0047	

General Information F.1

Permit #	13719-R1
Facility Name	Careaga #1
FID	4017
Company	PRE Resources
Device ID #	114417
Make	Mactronic
Model	M-200
Max Heat Rating (MMBTU/hr)	62.5
Air Assisted?	yes
Steam Assisted?	no

F.2 Gas Analysis Summary

Gas Information from Analysis				
	1	2		
Location of Sample:				
Actual Year of Analysis:	2011	2012		
ROC Mol%	12.1	15.15		
BTU Content (Btu/scf) HHV, dry, 14.73 psi 60F	1243.2	1347.8		
lb ROC/scf	0.01779365	0.023441035		
Assumed Control %	98	98		
Outlet ROC (ppmv)	2420	3030		
Calculated ROC Emission Factor (Ib/MMBtu)	0.286255635	0.347841443		
Gas Flared in Year (scf)	6388200	3796000		
notes:	none	none		
Weighted Average ROC Emission Factor based on flare volume:				

Weighted Average ROC Emission Factor based on flare volume:	0.30

F.3.1 Annual Flare Volume (2011)

Careaga 6-21 Annual Compliance Report 2011

	Oil Productio	Oil Production		Gas Production		Flare	
Month	Volume (BBLS)	Days	Volume (SCF)	Days	Volume (SCF)	Days	
January	0.36	5	92,000	5	0	0	
February	0	0	0	0	0	0	
March	0	0	0	0	0	0	
April	0	0	0	0	0	0	
May	213.7	21	1,675,500	21	1,675,500	21	
June	223.12	24	1,904,600	24	1,904,600	24	
July	126.46	19	1,502,500	19	1,502,500	19	
August	152	23	732,000	23	732,000	23	
September	184.45	30	134,600	30	134,600	30	
October	98.13	20	439,000	20	439,000	20	
November	0	0	0	0	0	0	
December	0	0	0	0	0	0	
Total	0	0	0	0	0	0	

F.3.2 Annual Flare Volume (2012)

Careaga 6-21 Annual Compliance Report 2012

	Oil Production		Gas Product	Gas Production		Flare	
Month	Volume (BBLS)	Days	Volume (SCF)	Days	Volume (SCF)	Days	
January	0	0	0	5	0	0	
February	0	0	0	0	0	0	
March	163	10	230,000	10	230,000	10	
April	268	25	1,571,000	25	1,571,000	25	
May	158	27	1,099,000	27	1.035.000	27	
June	149	25	468,000	25	210,000	25	
July	43	7	132,000	7	61,000	7	
August	135	16	354,000	16	248,000	16	
September	138	28	473,000	28	261,000	28	
October	94	26	393,000	26	180,000	26	
November	0	0	0	0	0	0	
December	0	0	0	0	0	0	
Total	1148	164	4,720,000	169	3,796,000	164	

F.4.1 Gas Analysis (2011)

Client: Venoco, Inc. 3201 Airpark Drive, Ste. 205 Santa Maria, Ca 93455 Attn: John Garnett		SAI Date 3 Date 7 Lab	SAMPLE ID. 1102380-2 Date Sampled: 05/19/11 @ 1115 Date Analyzed: 05/19/11 @ 1335 Lab Contact: J. Carstens			
Facility	Careada			Meter:		
Description:	Careaga 6	21		Pressure:	70	osig
Note:	Annual Cr	ude Oil and Gas Testin	g Tem	perature:	88	Ϋ́F
	Gas An	alysis by Chromat	tography - AS	STM D 194	5/3588	
omponent		Mole %	V	Veight %		G/MCF
				0.00		
)xygen		0.00		1 72		
litrogen		1.49		13 24		
arbon Dioxide		7.30		NA		
lydrogen Sulfide		NA				S 11
Methane		70.62		46.69		-
thane		8.49		10.52		2.162
Propane		5.92		10.76		1.632
Butane		0.88		2.10		0.288
-Butane		2.63		6.31		0.832
eo-Pentane		0.00		0.00		0.000
Pentane		0.66		1.95		0.240
Pentane		0.76		2.27		0.277
2-Dimethylbutane		0.08		0.28		0.028
3-Dimethylbutane		0.26		0.92		0.094
2-Methylpentane		0.52		1.86		0.189
3-Methylpentane		0.02		0.08		0.008
n-Hexane		0.07		0.23		0.028
Hexanes Plus		0.30		1.08		0.127
Totais		100.0		100.0	_	5.904
Specific Gravity, Calcula	ted	0.8378	air = 1.0000			
Compressibility (Z) Fact	or	0.9956			CHONS	Weight %
Gross Calorific Value				i	lydrogen	18.71
DTLUB ³ dou		1243.2		(Dxvgen	9.62
STUR UN		1293.2			litronen	1 72
BTU/ft' wet		1221.0			Sulfur	0.00
Net Calorific Value						
BTU/ft ³ dry		1129.9	E	PA 'F' Fact	or (60°F, 1ATM)	8609.3
BTU/ft ³ wet		1110.3	S	DCF/MMBT	U	
Hydrogen Sulfide =	NA	ppm				
ND: Ness Detected		NA: Not Analyzed	0	MCF: Gallo	ons/Thousand Cu	bic Feet

307 ROEMER WAY [SUITE 300] SANTA MARIA [CA 93453] (805)922-4772 | FAX (805)925-3376 | Oecuso.com

	mol %	mol%/100	MW	MW ROC
Methane	70.62	0.7062	16.044	11.30
Ethane	8.49	0.0849	30.07	2.55
Propane	5.92	0.0592	44.097	2.61
Iso-Butane	0.88	0.0088	58.12	0.51
N-Butane	2.63	0.0263	58.12	1.53
neo-pentane	0	0	72.15	0.00
i-Pentane	0.66	0.0066	72.15	0.48
n-Pentane	0.76	0.0076	72.15	0.55
2,2-Dimethylbutane	0.08	0.0008	86.18	0.07
2,3-Dimethylbutane	0.26	0.0026	86.18	0.22
2-Methylpentane	0.52	0.0052	86.18	0.45
3-Methylpentane	0.02	0.0002	86.18	0.02
n-Hexane	0.07	0.0007	86.18	0.06
Hexane Plus	0.3	0.003	86.18	0.26
ROC Mol%	12.10			

Total Mol Wt. ROC C3 to C6+	6.7523	lb/lbmol
At STP 1lb-mol =	379.48	scf
Total lbs of ROC C3 to C6+perft3	0.0178	

2011

Λ	
4	

F.4.2 Gas Analysis (2012)

Client. Venoco 3201 Airpark Santa Maria, Attn: John Garnet	Drive, Sta. 205 CA 93455	SAMPLE ID: 1201898-1 Date Sampled: 04/16/12 @ Date Analyzed: 04/17/12 @ Lab Contact: J. Carstens	1610 1132
Facility: Carreaga		Motor	
Description: Carreaga 6-2	1 Fuel Gas	Pressure 80	05ia
Note: Annual Crude	Oil and Gas Testing	Temperature 73	- F
Gas Ana	lysis by Chromato	graphy - ASTM D 1946/3588	1
Component	Mole %	Weight %	GMCF
Divigen	0.00	0.00	1
litrogen	1.42	1.65	
arbon Dioxide	5.84	100	*
vdrogen	0.00	0.00	*
vitrogen Sulficie	0.00	0.00	7.1
For ogen donne	0.00	0.00	
othane	58.98	43.38	- C
hane	8 62	10.15	2 195
opane	6.17	10.66	1701
Sutane	1.04	2.36	0.339
Butane	3.42	7.78	1.079
c-Pentane	0.00	0.00	0.000
Pentane	0.96	2.78	0.360
Pentane	1.25	3.55	0.454
2-Dimothylbutane	0.15	0.51	0.055
3-Dimethylbutane	0.55	1.68	0.100
Methylpentane	1.29	4.36	0.468
Methylpentane	0.07	0.22	0.004
Hexane	0.21	0.72	0.089
exanes Plus	0.02	0.05	0.000
	0.VL	the stage	0.000
stals	100.0	100.0	6.909
peolific Gravity, Calculated	0.8810 air=	1	
ompressibility (Z) Factor	0 9949	CHONS	Weight %
	2,02,62	Carbon	72.14
oss Calorific Value		Hydrogen	15.97
Ulft [*] dry	1347.8	Oxygen	7.32
Lift" wet	1324.3	Narpasa	1.55
	1324033	Sulfur	0.00
it Calorific Value		and the second	
'Ulft' dry	1226.9	EPA 'F' Factor (60°F, 1ATM)	8555.4
Uiff" wet	1205.6	SDCF/MM8TU	
drogen Sulfide =	0.32 ppm	547-537-547-50000-51	
actical Quantitation Limit(PQL)=	0.05 ppm		
2: None Detected N/	A: Not Analyzed	GIMCE Galons/Thousand Ou	hic East

	mol %	mol%/100	MW	MW ROC
Methane	68.98	0.6898	15.044	11.04
Ethane	8.62	0.0862	30.07	2.59
Propane	6.17	0.0617	44.097	2.72
Iso-Butane	1.04	0.0104	58.12	0.60
N-Butane	3.42	0.0842	58.12	1.99
ne o-pentane	0	0	72.15	0.00
i-Pentane	0.98	0.0096	72.15	0.71
n-Pentane	1.25	0.0125	72.15	0.90
2,2-Dimethylbutane	0.15	0.0015	86.18	0.13
2,3-Dimethylbutane	0.55	0.0055	86.18	0.47
2-Methylpentane	1.29	0.0129	86.18	1.11
3-Methylpentane	0.07	0.0007	85.18	0.06
n-Hexane	0.21	0.0021	86.18	0.18
Hexane Plus	0.02	0.0002	85.18	0.02
ROC Mol%	15.15			in source

Total Mol Wt. RDC C3 to C5+	8.8954	lb/lbmol
At STP 1 lb-mol =	379.48	scf
Total Ibs of ROC C3 to C6+ perft3	0.0234	

2012

G.1 General Information

Permit #	8269-R7
Facility Name	Braham/Boyne Lease
FID	3777
Company	Purisima Hills LLC
Device ID #	3344

Make	Kaldair
Model	Indar I-6-AS
Max Heat Rating (MMBTU/hr)	17.5
Air Assisted?	no
Steam Assisted?	no

G.2 Gas Analysis Summary

Gas Information from Analysis							
	1	2					
Location of Sample:	Separator to Flare	Separator to Flare					
Actual Year of Analysis:	2013	2014					
ROC Mol%	2.89	2.58					
BTU Content (Btu/scf) HHV, dry, 14.696 psi 60F	906.7	859.2					
Ib ROC/scf	0.0047	0.0040					
Assumed Control %	98	98					
Outlet ROC (ppmv)	578	516					
Calculated ROC Emission Factor (lb/MMBtu)	0.104	0.092					
Gas Flared in Year (scf)	30601600	32200000					
notes:	none	none					

Weighted Average ROC Emission Factor based on flare volume:	0.098
	-

G.3.1 Annual Flare Volume (2013)

2013 Annual Report H.P. Boyne Lease PTO 08269-R7 & PTO 12930 SSID: 01153 FID: 03777

	Permitted	Actual Level
Oil Production	2000 BOPD	184 BOPD
Gas production	773 MSCFD	285.647 MSCFD
Flared Gas	0	30601.6 MSCF/year
H2S Level	796 PPM	23 PPM
Total Sulfur (D1072)	796 PPM	UNKNOWN
Storage Temperature of Oil		110° F
RVP		1.1 psia
TVP @ 110° F		1.51 psi
API Gravity		13.2 @ 60° F
Gas BTU Content		907 btu/scf
Solvents and Coatings Used		No Solvents or Coatings were used in 2013

Month	Oil Vol.	Oil Vol.	Gas Vol.	Gas Vol.	Oil Producing Days	Gas Burning Days	Boiler Fuel Use	HT Fuel Use	Flare Gas Burned	Oil Shipments
	bbls/mo	bbls/day	mcf/mo	mcf/day	Days	Days	mcf/mo	mcf/mo	mcf/mo	Shipments
January	5103	165	8832.000	284.903	31	31	1742.2	449.5	2576.3	30
February	4804	172	7984.000	285.143	28	28	1573.6	406.0	2333.7	28
March	6022	194	8832.000	284.903	31	31	1742.2	449.5	2576.3	35
April	5687	190	8545.000	284.833	30	30	1686.0	435.0	2491.1	33
May	5427	175	8832.000	284.903	31	31	1742.2	449.5	2576.3	31
June	5590	186	8814.000	293.800	30	30	1686.0	435.0	2760.1	32
July	5917	191	8832.000	284.903	31	31	1742.2	449.5	2576.3	34
August	5915	191	8832.000	284.903	31	31	1742.2	449.5	2576.3	34
September	5514	184	8545.000	284.833	30	30	1686.0	435.0	2491.1	32
October	5751	186	8832.000	284.903	31	31	1742.2	449.5	2576.3	33
November	5660	189	8545.000	284.833	30	30	1686.0	435.0	2491.1	33
December	5975	193	8832.000	284.903	31	31	1742.2	449.5	2576.3	35
Totals	67365		104257.000		365	365	20513	5292.5	30601.6	390
Average	5614	184	8688.083	285.647			1709	441	2550	32.500

Notes: 1

Gas burned day represents the days which the boiler, heater treater (HT) and flare operated.

G.3.2 Annual Flare Volume (2014)

Sierra Resources, Inc. H. P. Boyne Lease, Barham Ranch Field 2014 Annual Report

Table 2: Combustion Equipment Fuel Use Summary January - December 2014 PTO 8269 Conditions 5.b, 5.c and 5.d

Protostal Todat /	Days on		Flare Fuel Use		Heater Treater Fuel Use		Boiler	ICE Fuel Use	
Month Produ	Production	Gas, MSCF	Days on	Gas, MSCF	Days on	Gas, MSCF	Days on	Gas, MSCF	MScf/month
Jan	31	12,481	31	5,425	31	974	31	2,480	3601.5
Feb	28	11,623	28	5,250	28	088	28	2,240	3253.0
Mar	31	12,481	31	5,425	31	974	31	2,480	3601.5
Apr	30	12,078	30	5,250	30	943	30	2,400	3485.3
May	31	12,650	31	5,425	31	974	31	2,480	3770.4
Jun	30	12,313	30	5,250	30	943	30	2,400	3719.9
Semi-Annual	181	73,625	181	32,025	181	5,689	181	14,480	21,432
Jul	31	12,481	31	5425	31	974	31	2,480	3601.5
Aug	31	12,481	31	5425	31	974	31	2,480	3601.5
Sep	30	12,078	30	5250	30	943	30	2,400	3485.3
Oct	31	12,481	31	5425	31	974	31	2,480	3601.5
Nov	30	12,078	30	5250	30	943	30	2,400	3485.3
Dec	31	12,481	31	5425	31	974	31	2,480	3601.5
Semi-Annual	184	74,079	184	32,200	184	5,783	184	14,720	21,377
Total Annual	365	147,705	365	64,225	365	11,471	365	29,200	42,808

G.4.1 Gas Analysis (2013)

ILFIELD	NVIRONMENT	AL AND COM	P. LI.A.N
Client: Sierra F	Resource	SAMPLE ID: 1303883-1	
P.O. Bo	x 1812	Date Sampled: 08/16/13 @	1430
Santa M	Aaria, CA 93454	Date Analyzed: 08/16/13 @	1725
Attn: Charlie	Katherman	Lab Contact: J. Carstens	
Facility: HP Boy	ne Lease	Meter: -	
Description: HP Boy	ne Seperator to Flare M-001	Pressure: 28	psig
Note: Annual	Oil and Gas Samples	Temp: 90	°F
G	as Analysis by Chromatogram	phy - ASTM D 1945/3588	
Component	Mole %	Weight %	G/MCF
-			
Oxygen	0.00	0.00	
Nitrogen	0.33	0.41	
Carbon Dioxide	17.83	34.77	
lydrogen Sulfide	0.00	0.00	-
Methane	77.73	55.25	
Ethane	1.22	1.62	0.310
Propage	0.97	1.90	0.269
Butane	0.32	0.83	0.105
n-Butane	0.55	1.42	0.174
neo-Pentane	0.00	0.00	0.000
Pentane	0.21	0.67	0.076
Pentane	0.13	0.42	0.047
2 2-Dimethylbutane	0.03	0.11	0.010
2.3.Dimethylbutane	0.07	0.27	0.025
2.Methyloentane	0.13	0.51	0.049
3.Methylpentane	0.00	0.00	0.000
-Hexane	0.03	0.10	0.011
Hexanes Plus	0.45	1.71	0.188
Totals	100.0	100.0	1.265
Specific Gravity, Calculated	0.7792 air = 1		
Compressibility (7) Eactor	0.9970	CHONS	Weight %
compressionity (2) racior.	0.0010	Carbon	58.73
Sross Calorific Value		Hydronen	15.57
STLUB ³ dev	906 7	Oviden	25.28
T 1003 unt	800.0	Nitrogen	0.41
STORE Wet	090.9	Sulfur	0.00
Net Calorific Value			
3TU/ft ³ dry	819.0	EPA 'F' Factor (60°F, 1ATN	l) 8704.3
3TU/ft ³ wet	804.7	SDCF/MMBTU	
Hydrogen Sulfide = 23	ppm		
All results reported at 60°F	and 14.696 psia.		
ND: None Detected	NA: Not Analyzed	G/MCF: Gallons/Thousand C	ubic Feet

307 ROEMER WAY |SUITE 300| SANTA MARIA | CA 93453 | (805)922-4772 | FAX (805)925-3376 | oecusa.com

	mol %	mol%/100	MW	MW ROC
Methane	77.73	0.7773	16.044	12.44
Ethane	1.22	0.0122	30.07	0.37
Propane	0.97	0.0097	44.097	0.43
Iso-Butane	0.32	0.0032	58.12	0.19
N-Butane	0.55	0.0055	58.12	0.32
neo-pentane	0	0	72.15	0.00
i-Pentane	0.21	0.0021	72.15	0.15
n-Pentane	0.13	0.0013	72.15	0.09
2,2-Dimethylbutane	0.03	0.0003	86.18	0.03
2,3-Dimethylbutane	0.07	0.0007	86.18	0.06
2-Methylpentane	0.13	0.0013	86.18	0.11
3-Methylpentane	0	0	86.18	0.00
n-Hexane	0.03	0.0003	86.18	0.03
Hexane Plus	0.45	0.0045	86.18	0.39
ROC Mol%	2.89			

Total Mol Wt. ROC C3 to C6+	1.7906	lb/lbmol
At STP 1lb-mol =	379.48	scf
Total lbs of ROC C3 to C6+ per ft3	0.0047	

2013

2014

G.4.2 Gas Analysis (2014)

Client: Sierra Resource P.O. Box 1812 Santa María, CA 9 Attr:: Marianne Strange Facility: HP Boyne Lease Description: HP Boyne Separa Note: Annual Oil and Ga	V I R O N M 3454 for to Flare M-001 s Samples	ENT	AL	A N D SAMPLE ID: Date Sampled: Date Analyzed: Lab Contact:	C O M 1404323-1 09/17/14 @ 09/20/14 @ J. Carstens	P L 0915 1201	1 A	N	с
Client: Sierra Resource P.O. Box 1812 Santa Maria, CA 8 Attr: Marianne Strange Facility: HP Boyne Lease Description: HP Boyne Separa Note: Annual Oil and Ga	3454 tor to Flare M-001 s Samples			SAMPLE ID: Date Sampled: Date Analyzed: Lab Contact:	1404323-1 09/17/14 @ 09/20/14 @ J. Carstens	0915 1201			-
Cierti: Sieria Presolito P.O. Box 1812 Santa Maria, CA & Attr: Marianne Strange Facility: HP Boyne Lease Description: HP Boyne Separa Note: Annual Oli and Ga	3454 tor to Flare M-001 s Samples			Date Sampled: Date Analyzed: Lab Contact:	09/17/14 @ 09/20/14 @ J. Carstens	0915 1201			- 1
F.O. BOA TO'L & Santa Maria, CA 9 Attr: Marianne Strange Facility: HP Boyne Lease Description: HP Boyne Separa Note: Annual Oil and Ga	3454 tor to Flare M-001 s Samples			Date Analyzed: Lab Contact:	09/20/14 @ J. Carstens	1201			
Attr: Marianne Strange Facility: HP Boyne Lease Description: HP Boyne Separa Note: Annual Oil and Ga	tor to Flare M-001 s Samples			Lab Contact:	J. Carstens	1201			
Attr: mananne Strange Facility: HP Boyne Lease Description: HP Boyne Separa Note: Annual Oil and Ga	or to Flare M-001 s Samples			Lab Contact.	J. Calsiells				
Facility: HP Boyne Lease Description: HP Boyne Separa Note: Annual Oil and Ga	tor to Flare M-001 s Samples								
Description: HP Boyne Separa Note: Annual Oil and Ga	or to Flare M-001 s Samples			Meter					
Note: Annual Oil and Ga	s Samples			Pressure:	25	nsia			
Note. Annuar our and Ga	a compres			Temp:	90	F			
				Temp				No.	
Gas A	nalysis by Chror	natograp	ohy - A	STM D 1945/3	588				
Component	Mole %			Weight %		G/M	CF		
2000	1 27			1.81					
liteasen	5.32			6.67					
ntrogen	15.02			20.50					
arbon Dioxide	15.02			20.00		-			
ydrogen Sullide	0.00			0.01		•			
-there	74 50			53 56					
these	1 22			1.64		0.3	11		
thane	1.22			1.04		0.2	71		
ropane	0.98			1.94		0.2	2		
Butane	0.32			0.04		0.1	07		
-Butane	0.59			1.04		0.1	07		
eo-Pentane	0.00			0.00		0.0	00		
Pentane	0.23			0.73		0.0	53		
-Pentane	0.15			0.48		0.0	04		
2-Dimethylbutane	0.03			0.11		0.0	10		
3-Dimethylbutane	0.08			0.30		0.0	28		
-Methylpentane	0.11			0.43		0.0	40		
-Methylpentane	0.00			0.00		0.0	00		
-Hexane	0.00			0.00		0.0	00		
lexanes Pius	0.09			0.34		0.0	37		
otals	100.0			100.0		1.12	28		
pecific Gravity, Calculated	0.7714 a	ir = 1							
Compressibility (Z) Factor	0.9973				CHONS	Weigl	ht %		
					Carbon	55.	05		
ross Calorific Value					Hydrogen	14.	96		
TU/ft ³ dry	859.2				Oxygen	23.	32		
Ti l/ft ³ wet	844.2				Nitrogen	6.6	57		
i ont wet	044.2				Sulfur	0.0	11		
let Calorific Value									
TU/ft ³ dry	775.8			EPA 'F' Factor (60°F, 1ATM	875	0.8		
TU/ft ³ wet	762.3			SDCF/MMBTU					
vdrogen Sulfide : 40 ppm			the second s	the local data was a second					
vdrogen Sulfide = 40 ppm I results reported at 60°F and 14.69	6 psia.								

307 ROEMER WAY |SUITE 300|SANTA MARIA | CA 93453 | (805)922-4772 | FAX (805)925-3376 | Oecusa.com

	mol %	mol%/100	MW	MW ROC
Methane	74.59	0.7459	16.044	11.94
Ethane	1.22	0.0122	30.07	0.37
Propane	0.98	0.0098	44.097	0.43
lso-Butane	0.32	0.0032	58.12	0.19
N-Butane	0.59	0.0059	58.12	0.34
neo-pentane	0	0	72.15	0.00
i-Pentane	0.23	0.0023	72.15	0.17
n-Pentane	0.15	0.0015	72.15	0.11
2,2-Dimethylbutane	0.03	0.0003	86.18	0.03
2,3-Dimethylbutane	0.08	0.0008	86.18	0.07
2-Methylpentane	0.11	0.0011	86.18	0.09
3-Methylpentane	0	0	86.18	0.00
n-Hexane	0	0	86.18	0.00
Hexane Plus	0.09	0.0009	86.18	0.08
ROC Mol%	2.58			

Total Mol Wt. ROC C3 to C6+	1.5024	lb/lbmol
At STP 1 lb-mol =	379.48	scf
Total lbs of ROC C3 to C6+perft3	0.0040	

H.1 General Information

Permit #	8837-R8
Facility Name	Blair Lease
FID	2637
Company	Purisima Hills LLC
Device ID #	1412

Make	Kaldair
Model	Indair I-6
Max Heat Rating (MMBTU/hr)	91.88
Air Assisted?	no
Steam Assisted?	no

H.2 Gas Analysis Summary

Gas Information from Analysis					
	1	2			
Location of Sample:	Separator to Flare	Separator to Flare			
Actual Year of Analysis:	2013	2014			
ROC Mol%	6.74	5.49			
BTU Content (Btu/scf) HHV, dry, 14.73 psi 60F	1061.2	1023.4			
lb ROC/scf	0.010	0.008			
Assumed Control %	98	98			
Outlet ROC (ppmv)	1348	1098			
Calculated ROC Emission Factor (Ib/MMBtu)	0.194	0.149			
Gas Flared in Year (scf)	201878500	223380000			
notes:	none	none			

Weighted Average ROC Emission Factor based on flare volume: 0.1

H.3.1 Annual Flare Volume (2013)

2013 Annual Report Blair Lease PTO 08837-R7 & PTO 09435-R5 SSID: 02638 FID: 02637

	Permitted	Actual Level
Oil Production	3000 BOPD	131 BOPD
Gas production	2,100 MSCFD	658.3 MSCFD
Flared Gas		240,253 MSCF/year
H2S Level	150 PPM	23 PPM
Total Sulfur (D1072)	150 PPM	UNKNOWN
Storage Temperature of Oil		120° F
RVP		3.2 psia
TVP @ 120° F		4.71 psi
API Gravity		30.0 @ 60° F
Gas BTU Content		1061 btu/scf
Solvents and Coatings Used		No Solvents or Coatings were used in 2013

Month	Oil Vol.	Oil Vol.	Gas Vol.	Gas Vol.	Oil Producing Days	Gas Burning Days ¹	Tank Heater Fuel Use	Flare Gas Burned	VRU Flare Gas Burned	Oil Shippments
	bbls/mo	bbls/day	mcf/mo	mcf/day	Days	Days	mcf/mo	mcf/mo	mcf/mo	Shipments
January	4906	158	22204	716.26	31	31	947.3	18944.8	7.94	28
February	3417	122	18616	664.86	28	28	855.6	15672.2	7.17	20
March	4151	134	20618	665.10	31	31	947.3	17358.8	7.94	24
April	3917	131	19955	665.17	30	30	916.7	16800.9	7.68	23
May	3739	121	20618	665.10	31	31	947.3	17358.8	7.94	21
June	3853	128	20567	685.57	30	30	916.7	17412.9	7.68	22
July	4079	132	19032	613.94	31	31	947.3	15772.8	7.94	23
August	4075	131	19032	613.94	31	31	947.3	15772.8	7.94	23
September	3800	127	18420	614.00	30	30	916.7	15265.9	7.68	22
October	4023	130	20618	665.10	31	31	947.3	17358.8	7.94	23
November	3933	131	19955	665.17	30	30	916.7	16800.9	7.68	23
December	4118	133	20618	665.10	31	31	947.3	17358.8	7.94	24
Totals	48011		240253		365	365	11153.2	201878.5	93.4	276
Average	4001	131	20021.1	658.27			929	16823	7.79	23.000

Notes: 1 Gas burned day represents the days which the tank and flares operated.

H.3.2 Annual Flare Volume (2014)

Г

Sierra Resources, Inc. Blair Lease 2014 Annual Report

Table 2: Combustion Equipment Fuel Use Summary January - December 2014 PTO 8837 Conditions 5.f and 5.g

高速高等和空波	Product	tion Flare	Tank Heater			IC Engines	
Month	Days on	Gas, MScf	Days on	Gas, MScf	Propane, MSCF	Gas, MScf	
Jan	31	18,972	31	850	0	3,094	
Feb	28	17,136	28	768	0	2,795	
Mar	31	18,972	31	850	0	3,094	
Apr	30	18,360	30	823	0	2,995	
May	31	18,972	31	850	0	3.094	
Jun	30	18,360	30	823	0	2,995	
Semi-Annual	181	110,772	181	4,965	0	18.067	
Jul	31	18,972	31	850	0	3.094	
Aug	31	18,972	31	850	0	3,101	
Sep	30	18,360	30	823	0	2,995	
Oct	31	18,972	31	850	0	3.094	
Nov	30	18,360	30	823	0	2.995	
Dec	31	18,972	31	850	0	3,094	
Semi-Annual	184	112,608	184	5,047	0	18,373	
Total Annual	365	223,380	365	10.011	0	36 440	
H.4.1 Gas Analysis (2013)

LFIELD EN	VIRONMENTAL	AND COMP	LIANCE,
Client: Sierra R	esource	SAMPLE ID: 13038	84-1
P.O. Box	1812	Date Sampled: 08/16/	13 @ 1400
Santa M	aria, CA 93454	Date Analyzed: 08/16/	13 @ 1759
Attn: Charlie H	Katherman	Lab Contact: J. Car	stens
Facility: Blair Lea	ise	Meter:	-
Description: Blair Lea	se Seperator to Flare M-001	Pressure: 4	2 psig
Note: Annual C	Dil and Gas Sample	Temp: 1	02 °F
Ga	as Analysis by Chromatogra	aphy - ASTM D 1945/35	G/MCF
-			
Oxygen	0.00	0.00	- ,
Nitrogen	2.21	2.75	
Carbon Dioxide	10.35	20.22	
Hydrogen Sulfide	0.00	0.00	
Methane	77.18	54.96	
Ethané	3.52	4.70	0.898
Propane	2.95	5.78	0.814
i-Butane	0.52	1.34	0.170
n-Butane	1.40	3.62	0.443
neo-Pentane	0.00	0.00	0.000
-Pentane	0.40	1.28	0.146
n-Pentane	0.40	1.28	0.144
2,2-Dimethylbutane	0.05	0.18	0.017
2,3-Dimethylbutane	0.16	0.60	0.057
2-Methylpentane	0.35	1.32	0.125
3-Methylpentane	0.01	0.05	0.005
n-Hexane	0.00	0.00	0.000
Hexanes Plus	0.50	1.91	0.210
Totals	100.0	100.0	3.029
Specific Gravity, Calculated	0.7778 air = 1		
Compressibility (Z) Factor	0.9966	CHON	S Weight %
		Carbo	n 64.78
Gross Calorific Value		Hydrog	gen 17.77
BTU/ft [°] dry	1061.2	Oxyge	n 14.70
BTU/ft ³ wet	1042.7	Nitroge Sulfur	en 2.75 0.00
Net Calorific Value			
BTU/ft ³ dry	961.3	EPA 'F' Factor (60°F, '	1ATM) 8634.9
BTU/ft ³ wet	944.6	SDCF/MMBTU	

307 ROEMER WAY I SUITE 300 I SANTA MARIA | CA 93454 | (805) 922-4772 | FAX (805) 925-3376

	mol %	mol%/100	MW	MW ROC
Methane	77.18	0.7718	16.044	12.35
Ethane	3.52	0.0352	30.07	1.06
Propane	2.95	0.0295	44.097	1.30
Iso-Butane	0.52	0.0052	58.12	0.30
N-Butane	1.4	0.014	58.12	0.81
neo-pentane	0	0	72.15	0.00
i-Pentane	0.4	0.004	72.15	0.29
n-Pentane	0.4	0.004	72.15	0.29
2,2-Dimethylbutane	0.05	0.0005	86.18	0.04
2,3-Dimethylbutane	0.16	0.0016	86.18	0.14
2-Methylpentane	0.35	0.0035	86.18	0.30
3-Methylpentane	0.01	0.0001	86.18	0.01
n-Hexane	0	0	86.18	0.00
Hexane Plus	0.5	0.005	86.18	0.43
ROC Mol%	6.74			

Total Mol Wt. ROC C3 to C6+	3.9161	lb/lbm ol
At STP 1 lb-mol =	379.48	scf
Total lbs of ROC C3 to C6+ perft3	0.0103	

2013

H.4.2 Gas Analysis (2014)

		0E	C			
DILFIELD	ENVIRON	MENT	AL AND	сом	PLIA	N C
Client: Sierra	Resource		SAMPLE I	D: 1404324-	1	and the second se
P.O. B	0x 1812		Date Sample	d: 09/17/14 (2 0945	
Attn: Marian	ne Strange		Lab Contac	d: 09/20/14 (ct: J. Carsten	ຫຼ 1321 ຮ	
Facility: Blair Le	ease		Mete	er: -		
Description: Blair Le	ase Separator to Flare M-0	01	Pressur	e: 50	psig	
Note: Annual	Oil and Gas Samples		Tem	p: 84	°F	
Component	Gas Analysis by Cl	nromatograpi	hy - ASTM D 1945/ Weight %	3588	G/MCF	
Oxvaen					Control.	
Nitrogen	2.00		. 0.00		-	
Carbon Dioxide	9.70		2.94		-	
lydrogen Sulfide	0.00		0.00		-	
Methane	78.81		58.61			
thane	3.63		5.06		0.925	
ropane	3.01		6.15		0.829	
Butane	0.49		1.33		0.162	
-outane	1.35		3.63		0.426	
Pentane	0.00		0.00		0.000	
-Pentane	0.23		0.77		0.084	
2-Dimethylbutane	0.04		0.78		0.084	
3-Dimethylbutane	0.04		0.10		0.015	
-Methylpentane	0.10		0.42		0.015	
-Methylpentane	0.00		0.00		0.000	
-Hexane	0.00		0.00		0.000	
exanes Plus	0.00		0.00		0.000	
otals	100.0		100.0		2.578	
pecific Gravity, Calculated	0.7448	air = 1				
ompressibility (Z) Factor	0.9970			CHONS	Weight %	
ross Calorific Value				Carbon	64.42	
TI 1/8 ³ dov	1000 1			Hydrogen	18.12	
TL/ft ³ wet	1023.4			Oxygen	14.52	
Wit Wet	1005.6			Nitrogen	2.94	
et Calorific Value				Sulfur	0.00	
TU/ft ³ dry	025.0		504 IS 5	andre same		
ru/ft ³ wet	925.9		SDCF/MMBTU	00'F, 1ATM	8641.3	
drogen Sulfide = 12 results reported at 60°F #	ppm and 14 696 psia					
have Detected	ne retoro pala.					
J. None Detected	NA: Not Analyzed		G/MCF: Gallons/	Thousand Cu	ubic Feet	

307 ROEMER WAY ISUITE 300 | SANTA MARIA | CA 93453 | (805)922-4772 | FAX (805)925-3376 | OCUSO.com

	mol%	mol%/100	MW	MW ROC
Methane	78.81	0.7881	16.044	12.61
Ethane	3.63	0.0363	30.07	1.09
Propane	3.01	0.0301	44.097	1.33
Iso-Butane	0.49	0.0049	58.12	0.28
N-Butane	1.35	0.0135	58.12	0.78
neo-pentane	0	0	72.15	0.00
i-Pentane	0.23	0.0023	72.15	0.17
n-Pentane	0.23	0.0023	72.15	0.17
2,2-Dimethylbutane	0.04	0.0004	86.18	0.03
2,3-Dimethylbutane	0.04	0.0004	86.18	0.03
2-Methylpentane	0.1	0.001	86.18	0.09
3-Methylpentane	0	0	86.18	0.00
n-Hexane	0	0	86.18	0.00
Hexane Plus	0	0	86.18	0.00
ROC Mol%	5.49			

Total Mol Wt. ROC C3 to C6+	2.8837	lb/lbmol
At STP 1 lb-mol =	379.48	scf
Total lbs of ROC C3 to C6+ per ft3	0.0076	

2014

I.1 General Information

ATC 14405
Blair Lease, Drum Canyon Production Facility
8673
Sierra Resources, Inc.
387448

Make	Indair
Model	I- 9 -AS
Max Heat Rating (MMBTU/hr)	33.4
Air Assisted?	no
Steam Assisted?	no

I.2 Gas Analysis Summary

Gas Information	from Analysis
	1
Location of Sample:	Separator to Flare
Actual Year of Analysis:	2014
ROC Mol%	7.31
BTU Content (Btu/scf) HHV, dry, 14.696 psi 60F	1146.5
Ib ROC/scf	0.0106
Assumed Control %	98
Outlet ROC (ppmv)	1462
Calculated ROC Emission Factor (lb/MMBtu)	0.186
Gas Flared in Year (scf)	450240
notes:	tested on 12/26/2014 , Drum canyon facility began operation on December 9, 2014

Weighted Average ROC Emission Factor based on flare volume:	0.186

I.3.1 Annual Flare Volume (2014)

Sierra Resources, Inc. ATC 14405, Drum Canyon, Blair Lease 2014 Annual Report

Table 2: Daily Flare Log December 2014

ATC 14405 Condition 5.c

Day of Month	Volume of Gas Combusted, MScf
1	0.00
2	0.00
3	0.00
4	0.00
5	0.00
6	0.00
7	0.00
8	0.00
9	0.00
10	0.00
11	0.00
12	0.00
13	0.00
14	0.00
15	0.00
16	28.14
17	28.14
18	28.14
19	28.14
20	28.14
21	28.14
22	28.14
23	28.14
24	28.14
25	28.14
26	28.14
27	28.14
28	28.14
29	28.14
30	28.14
31	28.14
Total	450.24

I.4.1 Gas Analysis (2014)

COLUMN TWO IS NOT

2014

OILFIELD ENVIRONMENTAL & COMPLIANCE, INC.

Client: Sierra Resource	SAMPLE ID: 1405771-1
P.O. Box 1812	Date Sampled: 12/26/14 @ 0845
Santa Maria, CA 93454	Date Analyzed: 12/26/14 @ 1454
Attn: Marianne Strange	Lab Contact: J. Carstens
Facility: Drum Canyon	Meter:
Description: Drum Canyon Gas Scrubber	Pressure: 27 psig
Note: Annual Oil and Gas Samples	Temp: 21 °F

Component	Mole %	Weight %	G/MCF	
Oxygen	0.02	0.04		
Nitrogen	1.94	2.62	-	
Carbon Dioxide	3.31	7.03		
Hydrogen Sulfide	0.00	0.00		
Methane	82.62	63.90	-	
Ethane	4.80	6.95	1.222	
Propane	3.68	7.82	1.014	
i-Butane	0.54	1.52	0.177	
n-Butane	1.54	4.30	0.485	
neo-Pentane	0.00	0.00	0.000	
i-Pentane	0.41	1.43	0.150	
n-Pentane	0.52	1.81	0.189	
2,2-Dimethylbutane	0.06	0.26	0.023	
2,3-Dimethylbutane	0.00	0.00	0.000	
2-Methylpentane	0.21	0.86	0.075	
3-Methylpentane	0.26	1.09	0.095	
n-Hexane	0.01	0.05	0.005	
Hexanes Plus	0.08	0.33	0.034	
Totals	100.0	100.0	3.468	
Specific Gravity, Calculated	0.7162 air = 1			
Compressibility (Z) Factor	0.9968	CHONS	Weight %	
		Carbon	71.37	
Gross Calorific Value		Hydroger	n 20.86	
BTU/ft ^{**} dry	1146.5	Oxygen	5.15	
BTU/ft ³ wet	1126.5	Nitrogen	2.62	
Net Calorific Value		Sultur	0.00	
BTU/ft ³ dry	1038.5	EPA 'F' Factor (60°F, 1AT	M) 8564.5	
BTU/ft ³ wet	1020.4	SDCF/MMBTU	,	
Hydrogen Sulfide = 2.2	ppm			
All results reported at 60°F an	d 14.696 psia.			
ND: None Detected	NA: Not Analyzed	G/MCE: Galloos/Thousand Cubic East		
the second se		onition - Odiforial Thousand	o dono i o ol	

307 ROEMER WAY | SUITE 300 | SANTA MARIA | CA 93454 | (805) 922-4772 | FAX (805) 925-3376

	mol %	mol%/100	MW	MW ROC
Methane	82.62	0.8262	16.044	13.22
Ethane	4.8	0.048	30.07	1.44
Propane	3.68	0.0368	44.097	1.62
Iso-Butane	0.54	0.0054	58.12	0.31
N-Butane	1.54	0.0154	58.12	0.90
neo-pentane	0	0	72.15	0.00
i-Pentane	0.41	0.0041	72.15	0.30
n-Pentane	0.52	0.0052	72.15	0.38
2,2-Dimethylbutane	0.06	0.0006	86.18	0.05
2, 3-Dimethylbutane	0	0	86.18	0.00
2-Methylpentane	0.21	0.0021	86.18	0.18
3-Methylpentane	0.26	0.0026	86.18	0.22
n-Hexane	0.01	0.0001	86.18	0.01
Hexane Plus	0.08	0.0008	86.18	0.07
ROC Mol%	7.31			

Total Mol Wt. ROC C3 to C6+	4.0370
At STP 1 lb-mol =	379.48
Total lbs of ROC C3 to C6+ per ft3	0.0106