SANTA BARBARA COUNTY AIR POLLUTION CONTROL DISTRICT POLICIES AND PROCEDURES

AIR TODDS HOW CONTROL DISTRICT			
POLICIES AND PROCEDURES			
Policy No. 6100.060.2016 Div Pol Yr	Draft		
Supersedes No. <u>6100.060.2000</u>	Final <u>x</u>		
Div Pol Yr			
Date:August 25, 2016	Pages <u>6</u>		
Topic: Calculation of Fugitive Hydrocarbon Emissions at Oil and Gas Facilities by the			
CARB/KVB Method - Modified for the Revised ROC Definition			
Distribution: Engineering Division Staff			

1.0 POLICY

This policy and procedure provides staff with necessary definitions and instructions on calculating fugitive hydrocarbon (FHC) emissions from valves, fittings, sumps, pumps, compressors, oil/water separators, producing wells and well cellars at oil and gas production facilities where no "as-built" component count is available. For this procedure, oil and gas production facilities are defined as any stationary source or facility with a Standard Industrial Classification ID code (SIC#) of 13. These facilities produce crude oil and/or gas from underground wells, and process the oil to separate water, condensable hydrocarbons, and hydrocarbon gas.

This CARB/KVB fugitive hydrocarbon (FHC) calculation method is valid only for calculating piping component (e.g., valves and connectors) FHC emissions from oil and gas production facilities that meet <u>all</u> of the following criteria:

- 1. An existing facility or source with valid PTOs.
- 2. No other "grand-fathered" method different than the CARB/KVB method was previously used for calculating FHC emissions at the facility.
- 3. The facility using the KVB method for determination of the potential to emit from piping components (e.g., valves, connectors, flanges and seals) was using this methodology for those devices on or before August 25, 2016, as documented the Permit to Operate for the facility.
- 4. Any proposed modification (via an ATC or PTO modification) to the facility that results in a project PTE for ROC of less than 25 lb/day.

Policies and Procedures Memoranda are intended to provide agency staff, applicants and the public guidance relative to standardized APCD procedures. These policies and procedures shall not be interpreted in conflict with APCD Rules and Regulations or administrative policies, and may be modified or updated periodically without advance notice.

- 5. The facility or source <u>does not</u> have a <u>District verified</u> component leakpath count.
- 6. The facility or source is onshore.

This CARB/KVB FHC emission calculation method is <u>not valid</u> for calculating piping component (e.g., valves and connectors) fugitive emissions at any facility that does not meet all the criteria listed above. P&P 6100.061 must be used for all other situations.

2.0 DEFINITIONS

In order to determine the correct FHC emission factors for equipment in a facility, the following definitions are provided. These definitions are relevant only to use of this procedure and do not constitute District policy with regard to interpretation of other District rules and regulations. The reference source for each definition, and the location within the reference are shown at the end of the definition as follows: {page and paragraph location in the reference} (Reference No.).

- 1. <u>Gas to Oil Ratio (GOR)</u>: The volume ratio of gas to liquid crude oil produced by the facility wells in units of SCF gas to bbl of crude oil {page 2-2, paragraph 5}. (1)
- 2. <u>Sump</u>: A lined or unlined excavated depression **in the ground** that is in more or less continuous use for separating oil, water, and sand in oil and gas production operations {page 95, paragraph 6}. Waste water tanks are considered to be part of this equipment category. (3)
- 3. <u>Primary Production Sump</u>: A sump that receives a generally continuous stream of oil and produced water directly from oil production wells and/or field gathering systems {page 96, paragraph 1}.⁽²⁾
- 4. <u>Secondary Production Sump</u>: A sump that receives a generally continuous waste water stream from one or more first stage separators (including a first stage sump and/or tank) {page 96, paragraph 2}. (2)
- 5. <u>Tertiary Production Sump</u>: A sump that receives a generally continuous waste water stream from second stage separation processes (sumps and tanks) upstream of the sump and in general has only a small amount of oil present {page 96, paragraph 3}.⁽²⁾
- 6. <u>Light Oil Service</u>: Sumps and well cellars which contain crude oil having an API gravity of 30 or greater {page 96, paragraph 3}. (2)
- 7. <u>Heavy Oil Service</u>: Sumps and well cellars which contain crude oil having an API gravity less than 30 {page 96, paragraph 3}. (2)
- 8. <u>Pit</u>: A lined or unlined excavated depression in the ground used for emergencies or to receive intermittent flows of waste products from drilling and oil production processes which may contain hydrocarbon materials {page 96, paragraph 4}. (2)

- 9. <u>Wells Heads</u>: Well piping and pumping equipment located above the underground oil and gas well casing.
- 10. Well Cellars: An access pit surrounding the well head {page 9-2}. (1)
- 11. <u>Steam Drive Wells</u>: A crude oil production well that relies on stimulating oil production through continuous steam injection into the producing formation via dedicated steam injection wells {page 9-2}. (1)
- 12. <u>Cyclic Steam Wells</u>: An oil production well which is stimulated periodically (not continuously) by steam injection into dedicated steam injection wells {page 9-1}. (1)
- 13. <u>"Pseudocyclic" Wells (Tertiary)</u>: These wells currently only exist in Kern County, California. (3) Refer to the District <u>1989 Air Quality Attainment Plan</u>, Appendix C, page R-46-1 for the definition on this type of well.
- 14. Oil/Water Separators: A class of waste water treatment equipment that processes **known volumes** of waste water on a **continuous** basis for treatment to remove entrained oil. **Waste** water tanks are <u>not</u> considered to be part of this equipment category. (3) API separators and Wemco separators are considered to be part of this equipment category. (4)
- 15. <u>Active Oil Wells</u>: All oil and gas producing wells not abandoned (eg. not plugged with concrete to block the well). (4) Active oil wells <u>do not</u> include waste water re-injection wells. (4)

3.0 METHODOLOGY

3.1 Required Data

To calculate FHC emissions from an oil and gas facility by the CARB/KVB method requires the following data:

Parameter	Units
1. The total gas production from the facility	SCF/day
2. The total dry crude oil production and API gravity of the crude produced by the facility	bbl/day and °API
3. The number of active oil and gas production wells that are serviced by the facility. Do not count waste water re-injection, or abandoned (plugged) wells	Number of wells
4. The types, quantities and characteristics of the following equipment at the facility:	
4.1 Well cellars (surface area of each)	ft ²
4.2 Oil/water separators (waste water throughput of each)	MM gals/day
4.3 Sumps (surface area, also type of service - light or heavy crude, and primary, secondary, or tertiary, for each	ft²
4.4 Pumps (facility has them or not)	Yes or no
4.5 Compressors (facility has them or not)	Yes or no
4.6 Well heads (quantity)	Number of wells
4.7 Enhanced oil recovery wells (quantity, type of well - steam drive, or cyclic steam, type of well vent - controlled or uncontrolled)	Number of wells by type, type of well vent (controlled or uncontrolled)
4.7.1 Steam driven wells	
4.7.2 Cyclic steam wells	
4.7.3 "Pseudocyclic" wells (Kern County only)	

3.2 Standard Assumptions

3.2.1 <u>Control Efficiencies</u>: The following control efficiencies are assumed for various types of equipment:

Table 3.2.1 Standard Assumed Control Efficiencies

Equipment Category	Type of Control	ROC Control Efficiency (% by wt.)
Oil/Water Separators, sumps and Waste Water Tanks	A) Uncovered, no vapor recovery. (4)	0.0
	B) Cover or roof. (2)	85.0
	C) Cover and vapor recovery.	95.0
2. Well Vents - Steam Drive		
and Cyclic Steam Drive Wells	A) Open air vents.	0.0
	B) Vent to vapor recovery.	95.0

- 3.2.2 <u>Facility Operation Factors</u>: FHC emissions from all facility equipment calculated by this method are assumed to occur continuously 24 hours per day, 365 days per year, as long as crude oil production, processing or storage is in progress within the facility.
- 3.2.3 Reactivity Factors (Ib ROC/ Ib TOG): The FHC emission calculation worksheets (FHCLC96) presented in Reference 6 of this policy provide estimates of the ROC hydrocarbon emissions from the facility. In order to calculate the total organic gas (TOG) emissions from the facility, the following ROC/TOG conversion factors are provided.

Table 3.2.3
Standard Assumed ROC/TOG Conversions

FHCLC96 Worksheets	Category Description and	ROC/TOG Factor
Section	Data Source	(lb/lb)
l.	Valves and Fittings (2) (5)	0.391
II.	Sumps and Well Cellars (5)	0.606
III.	Oil/Water Separators (5)	0.606
IV.	Pumps ⁽⁵⁾	0.492
IV.	Compressors (5	0.262
IV.	Wells Heads ⁽⁵⁾	0.606
V.	Enhanced Oil Recovery Wells	
	(all classes) ⁽³⁾	0.912

3.3 Procedure

- Staff shall gather the data listed in section 3.1. FHC emission calculations are performed using the FHCLC96.pdf worksheets (Reference 6) or the fhc-kvb5 spreadsheet (Reference 7). The FHCLC96 worksheets are divided into six sections I to VI.
- 2. <u>Calculating FHC Emissions</u>: To calculate FHC emissions use the FHC emission calculation for the proposed equipment using sections I to VI of the FHCLC96 worksheets or the fhc-kvb5 spreadsheet.

4.0 REFERENCES

- (1) KVB Inc., <u>Emissions Characteristics of Crude Oil Production Operations in California</u>, Contract No. A8-127-31, January 1983.
- (2) California Air Resources Board (CARB), <u>Technical Guidance Document to the Criteria and Guidelines</u> Regulation for AB-2588, pages 92-96, 108, and 118-120, August 1989.
 - Note: All the FHCLC96 worksheet ROC FHC emission factors of this policy were derived from Tables D-1, D-2, and D-3 of this report, as corrected for removal of ethane as an ROC.
- (3) Weller, Robert, CARB, Phone conversation between Bob Weller and Steve Sterner (SBCAPCD), January 25, 1990.
- (4) SBCAPCD, SBCAPCD policy for use of this procedure, January 1990.
- (5) California Air Resources Board (CARB), <u>Technical Guidance Document on Reactivity Profiles</u>, profile numbers 529, 530, 531, 532 and 297.
- (6) FHC Emission Calculation (FHCLC96) Worksheet, https://www.ourair.org/wp-content/uploads/fhclc96.pdf
- (7) FHC Emission Calculation (fhc-kvb5) Spreadsheet, https://www.ourair.org/wp-content/uploads/fhc-kvb5.xls