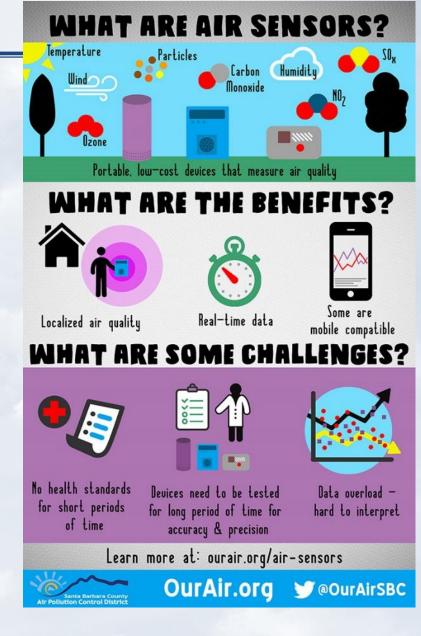
Projects with Portable Air Sensors


Board of Directors Santa Barbara County Air Pollution Control District

Our Mission: To protect the people and the environment of Santa Barbara County from the effects of air pollution.

Aeron Arlin Genet Director / APCO

Mary Byrd, Community Programs Supervisor With Co-Presenters January 18, 2018

Overview

- District's experience
- Jennifer Hernandez-Mora: Comparing 2 particle sensors
- Riccardo Magni: Sensors in the classroom
- Dr. Polidori: South Coast Air Quality Management District's sensors programs

District Approach

- Gain experience with sensors data
 - Consult with experts
 - Compare against federal reference method equipment
 - Identify optimal uses
- Explore educational opportunities

Cuyama Valley High School Study

- District coordinated study by Sonoma Technology
 - AirBeam (\$250) and Alphasense (\$500) particle sensors
 - Compared against federal reference method equipment
 - Classroom presentation

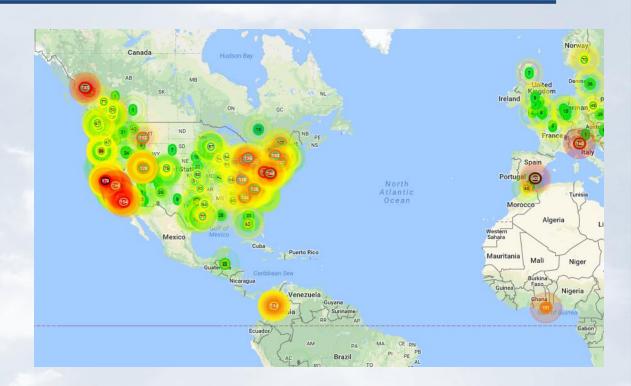
AirBeam

Alphasense



District Experience

- Results from New Cuyama
 - Sensors can detect high PM episodes
 - Useful as educational tool
 - More experience needed

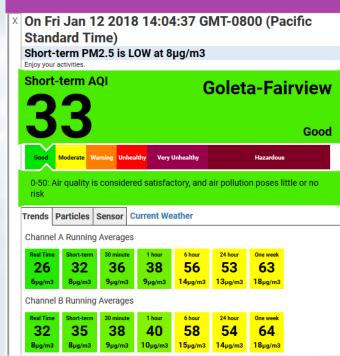


PurpleAir Sensors

- Low-cost sensor (\$230)
- Uses a fan to draw air past a laser, causing reflections from any particles in the air
- Measures fine particles (PM2.5), also PM1.0 and PM10

Santa Barbara County

Air Pollution Control District



 Reports data to public website along with Air Quality Index rating

PurpleAir Sensors

- Evaluating data
 - Sensor at Goleta monitoring station compared against federal reference method equipment
 - Followed trend, BUT sensor had much higher readings during Thomas Fire
 - Readings closer during non-fire conditions
 - More evaluations ongoing
- Educational projects

Early Takeaways

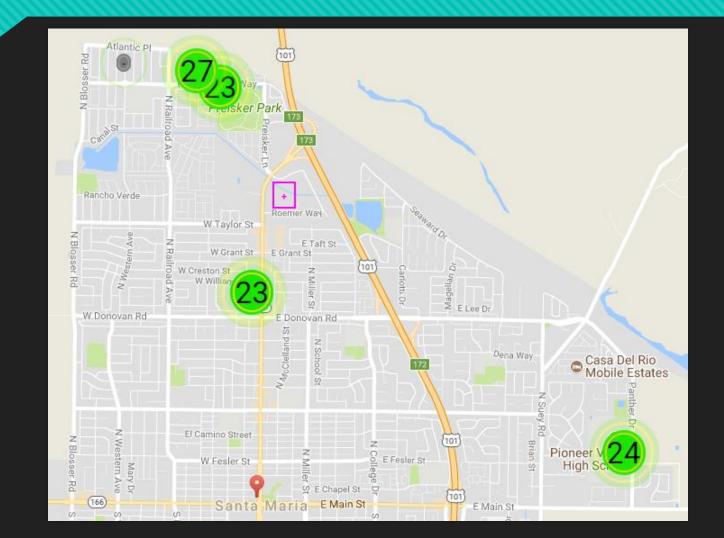
- Variable accuracy individually
- Many sensors taken together can offer higher accuracy
- Useful in detecting trends
- Need to provide public with tools for understanding levels that don't match the official monitoring results
- Need to continue to get experience, consult with experts
- Educational tool

Contact Information

Mary Byrd, Community Programs Supervisor

805-961-8833, ByrdM@sbcapcd.org

Next: Jennifer Hernandez-Mora


A Quantitative Analysis of PM 2.5 Microns in Santa Maria, CA

- Question: What time during the day would the air quality be classified as the worst?
- Hypothesis: The worst time would be the evening time.
- Device utilized: Dylos DC 1700
- Procedure: Tested 4 times throughout the day for 30 minute trials.
- O Duration: 22 days
- Conclusion: The earliest time proved to have the highest levels of particulates.

Continuing the Research...

- Purpose: To determine if the air in my neighborhood met air quality standards throughout the testing period.
- Duration: From the month of June to December.
- New monitor: Purple Air monitor
 - Detects sizes of 0.3, 0.5, 1.0, 2.5, 5.0 and 10um suspended in the air.
 - Uses PMS1003 laser particle counters
 - Records per minute and will give 1440 data points per day
 - Data is downloadable on purpleair.com
- Conclusion is yet to be determined

PURPLE AIR AT PVHS!

PROS AND CONS

O PROS:

- **O**REAL TIME DATA
- OSTUDENTS CAN SEE LOCAL DATA
- OSTUDENTS CAN LEARN MORE ABOUT INTERNATIONAL OR FAR AWAY AREAS
- STUDENTS GET MORE PRACTICE WITH NUMBERS

O CONS:

- **O**TECHNICAL DIFFICULTIES
- RELIANCE ON SENSOR NOT GETTING DAMAGED
- NEEDS CONTINUAL POWER AND WIFI

SBCEO COACHING PROJECT

• THE NEXT PHASE IN PURPLE AIR EDUCATION!

- I am going to educate 4 high school teachers about how to use Purple Air sensors in their classrooms with their students.
- Schools represented in the study include Santa Ynez High School, Santa Maria High School, and Pioneer Valley High School.
- Each participating teacher will get a Purple Air sensor to use for the remainder of the school year.

Santa Barbara County APCD Board of Directors Meeting; January 18, 2018

Evaluation of "Low-cost" Sensors for Measuring Gaseous and Particle Air Pollutants: Results from Three Years of Field and Laboratory Testing

> Andrea Polidori, Ph.D. Atmospheric Measurements Manager South Coast Air Quality Management District Diamond Bar, CA

- Established in July 2014
- Over \$600,000 investment \succ
- Main Goals & Objectives Provide guidance & clarity Promote successful evolution and use of sensor technology • Minimize confusion
- \succ Sensor Selection Criteria o Commercially available
 - Optical
 - Electrochemical
 - Metal oxide
 - Real- or near-real time
 - Criteria pollutants & air toxics

Field Testing

- Started in September, 2014 030+ sensors evaluated
- Process
 - Sensor tested in triplicates
 Collocation with FRMs/FEMs
 Two month deployment
 < ~ \$2,000: purchase
 - \circ > ~ \$2,000: lease or borrow
- Locations:
 - Rubidoux station (main)
 - Inland site
 - Fully instrumented

Laboratory Testing

T and RH controlled: T (0-50 °C); RH (5-95%)

Particle testing

- Particle generation systems
- Particle monitors: mass
 concentration and size distribution

Gas testing

- Gas generation / dilution system
- Gas monitors: CO, NO_X, O₃, SO₂, H₂S, CH₄/NMHC

www.aqmd.gov/aq-spec

Background

In an effort to inform the general public about the actual performance of commercially available "low-cost" air quality sensors, the SCAQMD has established the Air Quality Sensor Performance Evaluation Center (AQ-SPEC) program. The AQ-SPEC program aims at performing a thorough characterization of currently available "low-cost" sensors under ambient (field) and controlled (laboratory) conditions.

Main Goals & Objectives


- · Evaluate the performance of commercially available "low-cost" air quality sensors in both field and laboratory settings
- Provide guidance and clarity for ever-evolving sensor technology and data interpretation
- Catalyze the successful evolution, development, and use of sensor technology

Sensor Selection Criteria

- The sensor shall have potential for near-term use.
- The sensor shall provide real- or near-real time measurements.
- The sensor shall measure one or more of the National Ambient Air Quality Standards (NAAQS) criteria pollutants, air toxics, pollutants of concern and non- air toxics. Examples of the targeted gases and particles are carbon monoxide (CO), ozone (O₃), nitrogen oxides (NO₄), particulate matter (PM), volatile organic compounds (VOCs), hydrogen sulfide (H₂S) and methane (CH₄).
- The market cost of the sensor shall be less than \$2,000.
- Turnkey products will be tested first.

Why did SCAQMD create the AQ-SPEC Program?

www.aqmd.gov/aq-spec

Sensor Image	Manufacturer (Model)	Туре	Pollutant(s)	Approx. Cost (USD)	[*] Field R ²	*Lab R ²	Summary Report
	AethLabs (microAeth)	Optical	BC (Black Carbon)	~\$6,500	$R^2 \sim 0.79$ to 0.94		
0	Air Quality Egg (Version 1)	Optical	PM	~\$200	$R^2 \sim 0.0$		
	Air Quality Egg (Version 2)	Optical	PM	~\$240	$\begin{array}{l} PM_{2.5} : \ R^2 \sim \ 0.79 \ to \ 0.85 \\ PM_{10} : \ R^2 \sim \ 0.31 \ to \ 0.40 \end{array}$		
-	Alphasense (OPC-N2)			~\$450	$\begin{array}{l} PM_{1.0} \colon R^2 \sim 0.63 \text{ to } 0.82 \\ PM_{2.5} \colon R^2 \sim 0.38 \text{ to } 0.80 \\ PM_{10} \colon R^2 \sim 0.41 \text{ to } 0.60 \end{array}$	R ² ~ 0.99	PDF (1,291 KB)
G M	Dylos (DC1100)	Optical	PM _(0.5-2.5)	~\$300	$R^2 \sim 0.65$ to 0.85	$R^2 \sim 0.89$	PDF (1,384 KB)
	Foobot	Optical	PM2.5	~\$200	$R^2 \sim 0.55$		
	HabitatMap (AirBeam)	Optical	PM _{2.5}	~\$200	$R^2 \sim 0.65$ to 0.70	$R^2 \sim 0.87$	PDF (1,144 KB)
J	Hanvon (Hanvon N1)	Optical	PM2.5	~\$200	$R^2 \sim 0.52$ to 0.79		
	MetOne (Neighborhood Monitor)	Optical	PM _{2.5}	~\$1,900	$R^2 \sim 0.53$ to 0.67		
0	Moji China (Aimut)	Optical	PM2.5	~\$150	$R^2 \sim 0.81$ to 0.88		
	Naneos (Partector)	Electrical	PM (LDSA: Lung- Deposited Surface Area)	~\$7,000	$\begin{array}{l} PM_{1.0}; \; R^2 \sim 0.1 \\ PM_{2.5}; \; R^2 \sim 0.2 \end{array}$		
	Origins (Laser Egg)	Optical	PM2.5 & PM10	~\$200	PM _{2.5} : $R^2 \sim 0.58$ PM ₁₀ : $R^2 \sim 0.0$		
<u> </u>	Perkin Elmer (ELM)	Optical	PM	~\$5,200	$R^2 \sim 0.0$		
	PurpleAir (PA-I)	Optical	PM _{1.0} , PM _{2.5} & PM ₁₀	~\$150	$\begin{array}{l} \text{PM}_{1.0}\text{:}\ \text{R}^2 \sim 0.93 \text{ to } 0.95 \\ \text{PM}_{2.5}\text{:}\ \text{R}^2 \sim 0.77 \text{ to } 0.92 \\ \text{PM}_{10}\text{:}\ \text{R}^2 \sim 0.32 \text{ to } 0.44 \end{array}$	$\begin{array}{c} {\sf PM}_{1.0};\\ {\sf R}^2\sim 0.95\\ {\sf PM}_{2.5};\\ {\sf R}^2\sim 0.99\\ {\sf PM}_{10};\\ {\sf R}^2\sim 0.97 \end{array}$	PDF (1,072 KB)
2	PurpleAir (PA-II)	Optical	PM1.0, PM2.5 & PM10	~\$200	$\begin{array}{l} \text{PM}_{1.0} \colon \text{R}^2 \sim 0.96 \text{ to } 0.98 \\ \text{PM}_{2.5} \colon \text{R}^2 \sim 0.93 \text{ to } 0.97 \\ \text{PM}_{10} \colon \text{R}^2 \sim 0.66 \text{ to } 0.70 \end{array}$	$\begin{array}{c} \text{PM}_{1.0};\\ \text{R}^2 \sim 0.99\\ \text{PM}_{2.5};\\ \text{R}^2 \sim 0.99\\ \text{PM}_{10};\\ \text{R}^2 \sim 0.95 \end{array}$	PDF (1,328 KB)
1	RTI (MicroPEM)	Optical	PM _{2.5}	~\$2,000	$R^2 \sim 0.65$ to 0.90	$R^2 \sim 0.99$	PDF (1,087 KB)
	Shinyei (PM Evaluation Kit)	Optical	PM _{2.5}	~\$1,000	$R^2 \sim 0.80$ to 0.90	R ² ~ 0.93	PDF (1,156 KB)
	Speck	Optical	PM _{2.5}	~\$150	$R^2 \sim 0.32$		
	TSI (AirAssure)	Optical	PM _{2.5}	~\$1,500	$R^2 \sim 0.82$		

Results

Most PM sensors showed:

- Minimal down time
- Moderate intra-model variability
- Strong correlation (R²) with EPA "approved" instruments (e.g., FEM)

However...

- Sensor "calibration" is needed in most cases
- Very small particles (e.g. < 0.5 µm) are not detected
- Bias in algorithms used to convert particle counts to particle mass

Sensor Image	Manufacturer (Model)	Туре	Pollutant(s)	Approx. Cost (USD)	*Field R ²	*Lab R ²	Summary Report
-1	2B Technologies (POM)	UV absorption (FEM Method)	O ₃	~\$4,500	R ² ~ 1.00	R ² ~ 0.99	PDF (1,295 KB)
٩	Aeroqual (S-500)	Metal Oxide	O ₃	~\$500	$R^2 \sim 0.85$	$R^2 \sim 0.99$	PDF (1,197 KB)
0	Air Quality Egg (Version 1)	Metal Oxide	CO, NO ₂ & O ₃	~\$200	CO: $R^2 \sim 0.0$ NO ₂ : $R^2 \sim 0.40$ O ₃ : $R^2 \sim 0.85$		
	Air Quality Egg (Version 2)	Electrochem	CO & NO ₂	~\$240	CO: $R^2 \sim 0.0$ NO ₂ : $R^2 \sim 0.0$		
	Air Quality Egg (Version 2)	Electrochem	O3 & SO2	~\$240	O_3 : $R^2 \sim 0.0 \text{ to } 0.20$ SO_2 : $R^2 \text{ n/a}$		
	AQMesh (v.4.0) (Discontinued)	Electrochem	CO, NO, NO2 & O3	~\$10,000	CO: $R^2 \sim 0.42 \text{ to } 0.80$ NO: $R^2 \sim 0.0 \text{ to } 0.44$ NO ₂ : $R^2 \sim 0.0 \text{ to } 0.46$ O ₃ : $R^2 \sim 0.46 \text{ to}$ 0.83		
	Perkin Elmer (ELM)	Metal Oxide	NO, NO ₂ & O ₃	~\$5,200	NO: $R^2 n/a$ NO ₂ : $R^2 \sim 0.0$ O ₃ : $R^2 \sim 0.89$ to 0.96		
	Smart Citizen Kit	Metal Oxide	CO, NO ₂	~\$200	CO: $R^2 \sim 0.50$ to 0.85 NO_2 : $R^2 \sim 0.0$		
74	Spec Sensors	Electrochem	CO, NO ₂ & O ₃	~\$500	$\begin{array}{c} \text{CO:} \\ \text{R}^2 \sim 0.84 \text{ to } 0.90 \\ \text{NO}_2\text{:} \\ \text{R}^2 \sim 0.0 \text{ to } 0.16 \\ \text{O}_3\text{:} \\ \text{R}^2 \sim 0.0 \text{ to } 0.24 \end{array}$		
Ü	UNITEC (SENS-IT)	Metal Oxide	CO, NO ₂ & O ₃	~\$2,200	$\begin{array}{c} \text{CO:} \\ \text{R}^2 \sim 0.33 \text{ to } 0.43 \\ \text{NO}_2\text{:} \\ \text{R}^2 \sim 0.60 \text{ to } 0.65 \\ \text{O}_3\text{:} \\ \text{R}^2 \sim 0.72 \text{ to} \\ 0.83 \end{array}$	CO: $R^2 \sim 0.99$ O3: $R^2 \sim 0.82$ to 0.90	CO: PDF (1,283 KB) O3: PDF (1,177 KB)

Results

Most gaseous sensors showed:

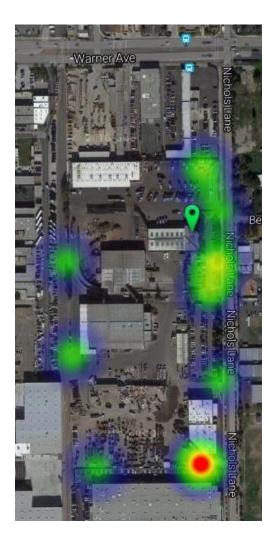
- Acceptable data recovery
- Wide intra-model variability range
- CO; NO; O₃ (when measured alone): good correlation with FRMs
- O₃ + NO₂: low correlation with FRM (potential O₃/NO₂ interference)
- SO₂; H₂S; VOC: difficult to measure with available sensors

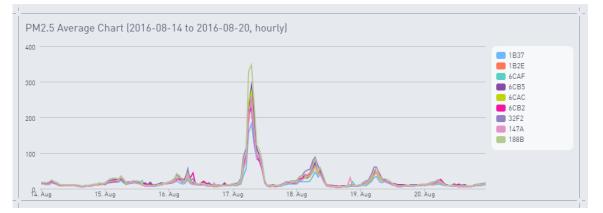
AQ-SPEC - What's Next? Sensor Certification Program?

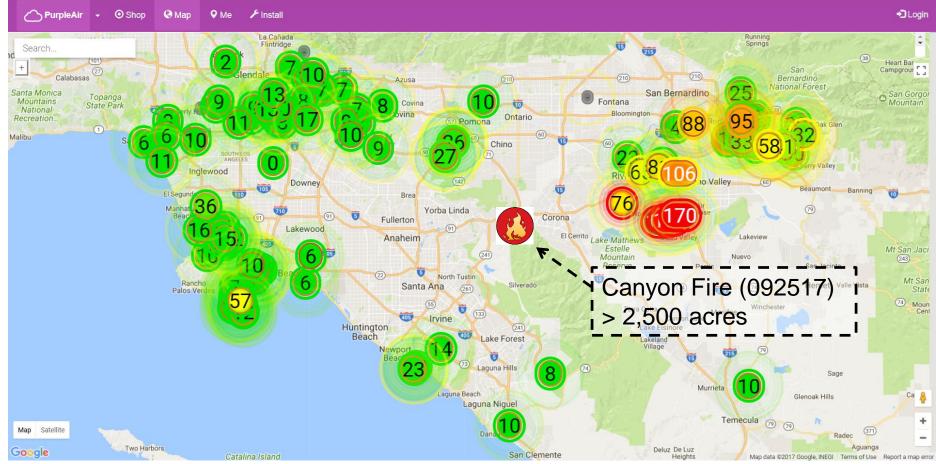
- Which pollutant(s) / sensor type(s)?
 - Are PM (e.g., particle counters) and Ozone (e.g., electrochemical) sensors good candidates?

- Regulatory?
- Fenceline?
- o Improve network design?
- Permitting?
- Other?
- Very expensive to implement correctly
 - \circ Multiple field testing locations across the Nation
 - Multiple laboratory testing facilities
 - Extended testing time

AQ-SPEC – Current Activities Fenceline Monitoring: Waste Disposal Facility




- Monitor fugitive emissions from a Waste Disposal facility in Southern California
- 9 sensor nodes deployed at facility fenceline on June 2016
- Wireless network / remote server
- Real-time PM₁, PM_{2.5} and PM₁₀ monitoring


AQ-SPEC – Current Activities Fenceline Monitoring: Waste Disposal Facility

- Dedicated website
 - <u>www.aqmd.meshify.com</u>
 - Real-time data logging, display, and mapping
 - Data analytics
 - Email and/or text alerts
- Project benefits
 - Correlate PM measurements w/ on-site activities
 - Measure PM levels before and after facility upgrades

AQ-SPEC – Current Activities PM Sensor Network

Note: Values are reported as AQI units

AQ-SPEC – Current Activities

U.S. EPA Science To Achieve Results (STAR) project

Engage, educate, and empower California communities on the use and applications of "low-cost" air monitoring sensors

- Provide communities with the knowledge necessary to select, use and maintain low-cost sensors and to correctly interpret the collected data
- ➤ Three year study:
 - SCAQMD (PI)
 - University of California Los Angeles (UCLA; Co-PI)
 - Sonoma Technology Inc. (STI; Co-PI)
 - o BAAQMD
 - Other CAPCOA agencies
 - Community Groups
 - Leisure World (Seal Beach, CA)
 - Weather Underground
 - University of Auckland (New Zealand)

AQ-SPEC – Current Activities

U.S. EPA Science To Achieve Results (STAR) project

Engage, educate, and empower California communities on the use and applications of "low-cost" air monitoring sensors

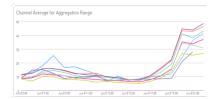
Four specific aims:

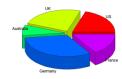
- 1. Develop educational material for communities
- 2. Evaluate / identify candidate sensors for deployment
- 3. Deploy selected sensors in California communities
- 4. Communicate the lessons learned to the public
- > On-going activities:
 - Wide Spread Sensor Deployment across California
 - Over 450 PM sensors
 - 100 Aeroqual nodes (i.e., PM, O₃, NOx)
 - Cloud Based Platform Development
 - Data ingestion and storage
 - Data visualization and mapping
 - Data dissemination

Low-cost Sensors / High-cost Networks

Single user (e.g. 1 sensor)

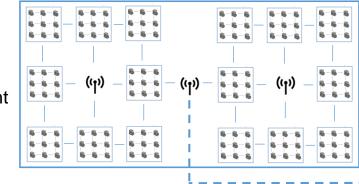
- o Cost: \$
 - Hardware
 - Minimal maintenance

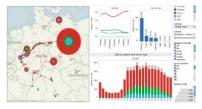




Small sensor network (e.g. 9 sensors)

- Cost: \$\$
 - Hardware
 - Maintenance & calibration
 - Sensor connectivity
 - Data logging and management
 - Data validation and analysis
 - Visualization and reporting





Large sensor network (e.g. > 100 sensors)

- Cost: \$\$\$\$
 - Hardware
 - Maintenance & calibration
 - Sensor connectivity
 - Data logging and management
 - Data validation and analysis
 - Visualization and reporting

Thanks!

The AQ-SPEC Team

- Dr. Andrea Polidori
- Dr. Vasileios Papapostolou
- Brandon Feenstra
- Dr. Hang Zhang
- Berj Der Boghossian
- Dr. Olga Pikelnaya