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1. Introduction 

Windblown dust can contribute to high particulate matter (PM) concentrations, which can be harmful 
to human health. In areas of Santa Barbara County, strong winds in the spring and fall can create 
localized high concentrations of dust in the air, including at local schools. Currently, there is no cost-
effective way to determine when dust concentrations are high at schools so that school 
administrators can take actions, such as keeping students indoors, and cancelling or rescheduling 
outdoor activities to reduce exposure to PM. However, the increasing availability of low-cost, easy-to-
use PM sensors offers a new opportunity to monitor PM at local schools and engage school teachers, 
administrators, and students through their participation. 

Santa Barbara County Air Pollution Control District (SBCAPCD) asked Sonoma Technology, Inc. (STI) 
to investigate the use of low-cost sensors for monitoring dust by conducting a pilot field study at 
Cuyama Valley High School in New Cuyama, California. The objectives of the study included: 

1. Determine whether the low-cost PM sensors detect dust events and if so, how well they 
detect dust events. 

2. Determine how precise the sensor measurements are and whether sensor precision is 
sufficient either for use in a network to monitor the spatial variability of PM, or for obtaining 
localized data to augment information available from the regional monitoring network. 

3. Determine whether the sensors operate continuously and meet data completeness 
requirements for reliably detecting dust events. 

4. Determine whether the sensors could be used as part of an “early warning system” to inform 
decisions to reduce student exposure to high PM concentrations. 

To address these objectives, STI identified and acquired six low-cost PM sensor devices and designed 
and conducted a three-month field study to characterize the performance of the sensors for 
detecting dust events and quantifying their impacts. PM10 (PM less than 10 microns in diameter, also 
referred to as coarse particles) and PM2.5 (PM less than 2.5 microns in diameter, also referred to as 
fine particles) concentrations were measured. Two low-cost PM sensor models were used: 
Alphasense to measure PM2.5 and PM10, and AirBeam to measure PM2.5. Three of each type, recording 
data at 1-min temporal resolution, were deployed at Cuyama Valley High School to evaluate data 
quality and sensor performance. The sensors were collocated with a federal equivalent method PM10 
MetOne Beta-Attenuation Monitor (BAM), recording data at 1-hr temporal resolution. Referred to in 
this report as the BAM-1020, this is the equipment used at regional air district monitoring stations to 
determine whether an area is in attainment of air quality standards. Also collocated with the sensors 
were a GRIMM 11-R dust monitor that reports particle counts in 31 size bins at 1-min temporal 
resolution, and an R.M. Young 05305V meteorological station that measures wind speed and 
direction at 1-min temporal resolution. STI performed a comprehensive data analysis to address the 
project objectives and evaluated all monitoring and data reporting components to develop 
guidelines for future deployments. STI and SBCAPCD staff also discussed the study with Cuyama 
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Valley High School students, prepared a data set that the students could use to answer their 
questions about air quality at the school, and shared the data set with the students.     

This study found that 

• The low-cost PM sensors examined are capable of detecting high PM concentration episodes 
related to windblown dust. 

• Data recovery was sufficiently high for reliably detecting dust events. 

• Sensor precision was sufficiently high for use in a network to identify and characterize 
hotspots, or to obtain localized data to augment information from the regional monitoring 
system. 

• The sensors could be used as part of an early warning system that could inform decisions to 
limit exposure to PM. 
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2. Study Design 

2.1 Overview 

The field study took place from April 4, 2016, to July 6, 2016. Figure 1 shows a satellite image of the 
monitoring site at Cuyama Valley High School relative to nearby agricultural areas. The site was 
chosen due to its proximity to the school, accessibility, security, and access to power for the 
equipment. 

 

Figure 1. Satellite imagery from Google Earth showing the location of the monitoring site (red 
pin) at Cuyama Valley High School relative to nearby agricultural areas.  

Table 1 lists the instrumentation used in the study. The equipment installed included a MetOne 
BAM-1020 FEM PM10 monitor, a GRIMM 11-R optical particle counter, six low-cost PM sensors (three 
Alphasense OPC-N2s that measure PM10 and PM2.5 and three AirBeams that measure PM2.5), and a 
R.M. Young 05305V wind sensor. These instruments were deployed from April 4, 2016, to July 6, 2016. 
The SBCAPCD also deployed an E-BAM at the monitoring site between April 4, 2016, and June 30, 
2016; however, the analyses here focus on findings from the instrumentation deployed by STI.  
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The BAM-1020 was deployed to evaluate sensor1 performance (i.e., accuracy) and data quality. The 
equipment measures particle mass by collecting dust on a filter tape and measuring the attenuation 
of Beta rays across the tape to estimate PM concentration. Three of each of the two low-cost sensor 
models were deployed to assess sensor precision and reliability. These sensors use light scattering to 
measure particle counts in units of hundreds of particles per cubic foot and use internal algorithms 
to convert particle counts to concentrations in units of μg/m3. The amount of light scattering 
depends not only on particle count, but also on the size, shape, color, and reflective properties of the 
particles. The cost of a BAM-1020 is approximately $23,000. Retail cost is approximately $250 for an 
AirBeam sensor and approximately $500 for an Alphasense sensor. 

The GRIMM was deployed to obtain particle size information and assist with interpretation of sensor 
performance as a function of particle size. The GRIMM is a portable aerosol spectrometer that sends 
single particles across a light beam and then measures the resulting scattering of light. Light-
scattering properties are proportional to particle size, and the occurrence of scattering provides 
particle count in a known volume of air. The GRIMM reports the number of particle counts in each of 
31 size bins spanning 0.25−32 µm. Mass can be calculated from GRIMM measurements using 
assumptions of particle density by size and particle counts. 

Table 1. Summary of study instrumentation. 

Instrument Company Measurement Resolution Technique 

BAM-1020 
MetOne 
Instruments 

PM10 (μg/m3) 1-hr Beta attenuation 

GRIMM 11-R  
GRIMM 
Aerosol 

Particle counts in 31 
size bins spanning  
0.25-32 µm  

1-min Light scattering 

Alphasense OPC-N2 Alphasense PM2.5, PM10 (μg/m3) 1-min Light scattering 

AirBeam HabitatMap PM2.5 (μg/m3) 1-min Light scattering 

R.M. Young 05305V Young USA 
Wind speed and 
direction 

1-min 
Propeller and 
vane 

E-BAM 
MetOne 
Instruments 

PM10 (μg/m3)  1-min Beta attenuation 

Figures 2 through 7 show the sensors and equipment installed at the monitoring site. All of the 
instruments were located within a few feet of one another, and the monitoring site was fenced in for 
security (Figure 4). The three Alphasense and three AirBeam sensors were initially housed in three 
boxes on a small tripod (Figure 5). Each box was equipped with a vent to allow air to be drawn in and 
a small exhaust fan to blow air out. The meteorological equipment was located on a second tripod. 

                                                   
1 In this document, the term sensor is used to refer to the Alphasense and/or AirBeam instruments. 
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The BAM-1020 and GRIMM were housed in a climate-controlled shelter (Figure 6). Data collected 
during the study were stored onsite and transmitted in real-time to STI’s servers via a cellular modem 
for archival within a data management system (DMS) developed for the project. Data were also made 
available for review on a project website. 

In STI’s previous experience working with low-cost PM sensors, STI has found evidence of a sampling 
bias associated with the orientation of the sensor sampling inlet. To assess whether there are any 
impacts from sampling orientation on sensor measurements, the sampling orientation for the 
sensors was varied as shown in Table 2. Furthermore, on June 1, 2016, Alphasense A was relocated to 
a third tripod so that it could sample omnidirectionally to further assess the impacts of sampling 
orientation (Figure 7).  

 

Figure 2. Photographs of the exterior (left) and interior (right) of the AirBeam sensor. 

 

Figure 3. Photograph of the Alphasense sensor. 
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Figure 4. Monitoring equipment and site. 

 

Figure 5. Housing for Alphasense and AirBeam sensors. 
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Figure 6. The climate-controlled shelter housing the BAM-1020 and GRIMM instruments. 

 

Figure 7. Site layout after June 1, 2016, when Alphasense A was relocated to another tripod 
(far right) and equipped with omnidirectional sampling equipment. 
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Table 2. Instrument sample orientation. 

Instrument Sampling Orientation 

BAM-1020 Omnidirectional 

GRIMM 11-R Omnidirectional 

Alphasense A North/Omnidirectionala 

Alphasense B North 

Alphasense C South 

AirBeam A North 

AirBeam B North 

AirBeam C South 

E-BAM Omnidirectional 
a Between April 4, 2016, and June 1, 2016, Alphasense A sampled from the north. On June 1, 2016, 

Alphasense A was relocated to a new tripod, where it sampled omnidirectionally until July 6, 2016. 

2.2 Data Management and Review 

During the three months of data collection, the data were reviewed daily to ensure that the 
equipment remained operational. Qualitative comparisons among the low-cost sensors and BAM-
1020 were made by reviewing time-series and scatter plots within the DMS and project website to 
ensure that data from the instruments remained comparable over time. Figure 8 shows a screenshot 
of the project website. Additional data quality control, including time stamp review, was completed 
prior to analysis. 
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Figure 8. Project website. 

Instrument setup began on April 4, 2016. During the study, the following periods of missing data and 
issues with data quality occurred: 

• Onsite configuration of the data logging for the sensors was more challenging than 
anticipated. Onsite troubleshooting of issues resulted in some periods of data loss during the 
first week of the study. 

• Following a rainstorm at the onset of the study, the GRIMM stopped working. STI worked 
with the manufacturer but was unable to correct the issue, and the instrument had to be 
replaced. As a result, GRIMM data were not available until April 22, 2016. 

• The pump for the E-BAM failed in late May, and data were unavailable for the end of May 
and the first week of June. 

• A community-wide power outage occurred on May 31, 2016, and data were not available 
between 4:00 p.m. and 8:00 p.m. on that day. 
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• Several periods of missing Alphasense data during the first half of the study were caused by 
communication issues between the Alphasense sensors and the data logger. The sensors 
were set up to connect to the data logger every minute; however, if the connection could not 
be made, the sensor would shut off. Once the issue was identified, data communication was 
reprogrammed so that the sensors would automatically turn back on after an interruption in 
communication with the data logger. 
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3. Field Study Results 

This section presents an overview of the meteorological conditions and PM10 concentrations during 
the study and discusses sensor performance, which encompasses precision, accuracy, sampling 
orientation, meteorological impacts, reliability, drift, and the potential for early detection of high PM 
concentration events. Because of the instrument issues that occurred prior to April 14 (as discussed 
in Section 2.2), the analysis and results discussed here are for April 14, 2016, through July 6, 2016. 

3.1 Air Quality and Meteorology Summary 

To characterize the prevalence and timing of high PM concentration episodes at Cuyama Valley High 
School, we first examined meteorological data and PM10 measurements from the BAM-1020 over the 
length of the study. For the purposes of the analysis, a PM10 concentration threshold of 50 μg/m3 was 
used to define “high PM” because this is the value of the 24-hr PM10 California Ambient Air Quality 
Standard. Figure 9 shows a wind rose for April 14, 2016, through July 6, 2016. During the study 
period, winds were typically light (1-2 m/s) and out of the southeast, although moderate 
northwesterly winds were also observed. The average wind speed was approximately 2 m/s.   

 

Figure 9. Wind rose for April 14, 2016, through July 6, 2016. 
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Figure 10 shows hourly PM10 concentrations recorded by the BAM-1020. High hourly PM10 
concentrations, exceeding 50 μg/m3, occurred frequently during the study. The average hourly PM10 
concentration recorded by the BAM-1020 was 34 μg/m3; the median value was 25 μg/m3. The 
maximum PM10 concentration observed was 758 μg/m3. While high PM10 concentrations exceeding 
50 μg/m3 were observed throughout the study, high concentration episodes were more prevalent in 
June and early July than in April and May. To examine regional transport patterns, STI modeled 
transport trajectories for several of the high PM10 concentration days identified during this study 
using the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT).2 Modeled 
regional transport patterns suggest that on some days, PM10 from the California Central Valley is 
transported to the New Cuyama area, contributing to the concentrations observed (not shown); 
however, the short-duration high-concentration events reported by the sensors (see Section 3.2.4) 
suggest that local transport of dust is also a major contributor to the observed high PM10 
concentrations. 

  

Figure 10. Hourly PM10 concentrations recorded by the BAM-1020 between April 14, 2016, 
and July 6, 2016. 

                                                   
2 The National Oceanic and Atmospheric Administration’s (NOAA) publicly available HYSPLIT model was used for the trajectory 
modeling (http://ready.arl.noaa.gov/HYSPLIT.php). HYSPLIT is a widely used model that calculates the path of a single air parcel from 
a specific location and height above the ground over a period of time; this path is the modeled trajectory. 
 

http://ready.arl.noaa.gov/HYSPLIT.php
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Figure 11 shows daily 24-hr average PM10 concentrations recorded by the BAM-1020 for April 14, 
2016, through July 6, 2016. Daily average PM10 concentrations ranged from 6.0 to 92.3 μg/m3; 
concentrations exceeded 50 μg/m3 on 18 of 84 days (21% of the time). 

 

Figure 11. Daily average PM10 concentrations recorded by the BAM-1020 from April 14, 2016, 
through July 6, 2016. 
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To characterize wind conditions when high PM10 concentrations occurred, Figure 12 shows a wind 
rose of hourly data collected when the BAM-1020 recorded PM10 concentrations of 50 μg/m3 or 
higher. High hourly PM10 concentrations typically occurred during low wind speed conditions when 
winds were out of the southeast, in the direction of nearby agricultural areas. However, PM10 
concentrations were also high when there were strong winds from the northwest. 

 

Figure 12. Wind rose for hours during April 14, 2016, through July 6, 2016, when the BAM-
1020 recorded hourly PM10 concentrations at or above 50 μg/m3. 
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Figure 13 shows the count of hourly BAM-1020 PM10 concentrations at or above 50 μg/m3 by time of 
day. High PM10 concentrations typically occurred during the morning hours, between midnight and 
9:00 a.m.  

 

Figure 13. Hourly PM10 concentrations at or above 50 μg/m3 by time of day from April 14, 
2016, through July 6, 2016.   

3.2 Sensor Performance 

Our assessment of sensor performance is based on the assumption that there are differing degrees 
of trust in the measurements from different instruments. The “gold standard” is the federal equivalent 
method BAM-1020, with the highest degree of trust. Next are the GRIMM size distribution 
measurements and the E-BAM, with moderate degrees of trust. Finally are the Alphasense and 
AirBeam sensors that we are evaluating in this study. Sensor performance was assessed by examining 
sensor precision, accuracy, reliability, drift, and potential for detecting high PM concentration events. 
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3.2.1 Precision 

To assess sensor precision, we compared 1-min average measurements among the Alphasense and 
AirBeam sensors. For example, Figure 14 compares 1-min average PM10 concentrations from the 
Alphasense B and Alphasense C sensors. All three sensors were well correlated with one another 
(R2 = 0.81−0.90), indicating good precision, particularly at high concentrations.   

  

Figure 14. Comparison of 1-min average PM10 concentrations from Alphasense B and 
Alphasense C collected between April 14, 2016, and July 6, 2016. 
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Average PM2.5 concentrations from the three AirBeam sensors were also well correlated 
(R2 = 0.90−0.95) throughout the study (see, for example, Figure 15).  

  

Figure 15. Comparison of 1-min average PM2.5 concentrations from AirBeam A and AirBeam B 
collected between April 14, 2016, and July 6, 2016. 
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3.2.2 Accuracy 

To assess sensor accuracy, hourly average sensor measurements were compared with hourly PM10 
concentrations from the BAM-1020. The BAM-1020 data were treated as accurate. Figure 16 shows 
the relationship between hourly PM10 concentrations measured by the Alphasense B sensor and the 
BAM-1020. The Alphasense and BAM-1020 measurements are fairly well-correlated (R2 = 0.67); 
however, on average, the magnitudes of the BAM-1020 measurements are more than a factor of six 
higher than those reported by the Alphasense B sensor (slope of best fit = 0.16). Comparisons 
between the Alphasense A and Alphasense C sensor data with the BAM-1020 exhibited similar results 
(R2 = 0.61−0.76; slope = 0.13−0.22). The relatively good correlation between the sensors and the 
BAM-1020 indicates that a correction factor can be derived from the comparison between sensor 
and BAM-1020 measurements. The correction factor can be applied to correct the sensor bias and 
achieve better accuracy. For example, a correction factor of 6.25 was derived from the relationship 
between the Alphasense B and BAM-1020 data shown in Figure 16; this factor could be applied to 
the Alphasense B data to achieve better agreement with the BAM-1020. Note that the appropriate 
correction factor may vary by location, by sensor, and over time, particularly if drift in sensor 
response is an issue (see drift discussion in Section 3.2.3). 

 

Figure 16. Comparison of hourly average PM10 concentrations from Alphasense B and the 
BAM-1020 collected between April 14, 2016, and July 6, 2016.  

Similarly, Figure 17 shows the relationship between hourly PM2.5 concentrations measured by 
AirBeam B and the BAM-1020. The AirBeam measurements are not as well correlated with the BAM-
1020 as the Alphasense sensors are (R2 = 0.21), and they are biased low compared to the BAM-1020 
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(as expected, given that the AirBeam measures PM2.5, and the BAM-1020 measures PM10). 
Comparisons between the AirBeam A and AirBeam C sensor data with the BAM-1020 exhibited 
similar results (R2 = 0.25−0.33; slope = 0.05−0.06). 

 

Figure 17. Hourly average PM2.5 concentrations measured by AirBeam B versus hourly 
average PM10 concentrations measured by the BAM-1020.   
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Sampling Orientation 

On June 1, 2016, Alphasense A was relocated to a third tripod to sample omnidirectionally so that 
analysts could assess whether sampling orientation impacted sensor measurements. At the 
beginning of the study, Alphasense A had sampled from the north; Alphasense B sampled from the 
north and Alphasense C sampled from the south during the entire study. Figure 18 shows the 
relationship between Alphasense A and the BAM-1020 during the one week before and the one 
week after the sensor was moved. The correlation and slope of the best fit lines between the 
Alphasense A and BAM-1020 increased after the sensor was moved (before: R2=0.78, slope=0.24; 
after: R2=0.90, slope=0.31). The increased correlation and slope suggest that sampling orientation 
may play a significant role in the PM fraction sampled by the sensor. Sampling orientation is 
expected to be important for sampling by the AirBeam instruments as well but was not tested as part 
of this study.   

 

Figure 18. Comparison between hourly PM10 concentrations from Alphasense A and the 
BAM-1020 during the week before (left) and week after (right) Alphasense A was moved to 
sample omnidirectionally. Note: x and y axis scales are different. 



● ● ●    3. Field Study Results 
 

● ● ●    21 

3.2.3 Reliability and Drift 

Data Recovery 

Table 3 summarizes data recovery from April 14, 2016, through July 6, 2016. Periods of data loss that 
occurred during system installation (prior to April 14, 2016) are not included in the number of 
possible samples since data loss during those periods was not related to the performance of the 
sensor technology specifically. Data completeness of 75% of 1-min samples was required for each 
1-hour sample. Data completeness was high (greater than 88%) on both 1-min and 1-hour average 
time frames for all sensors. As discussed in Section 2.2, several periods of missing Alphasense data 
during the first half of the study were caused by communication issues related to the data logger 
rather than the Alphasense sensor itself. Neglecting data loss related to the data logger issue, data 
recovery for the Alphasense sensors was over 99% for 1-min data and approximately 100% for hourly 
data. 

Table 3. Data recovery for the sensors from April 14, 2016, through July 6, 2016. 

Sensor 
Number of 

Possible  
Samples 

Number of 
Samples 

Recovered 

% Recovery 
1-min  

% Recovery 
1-hr 

Alphasense A 120,181 105,934* 88.1 88.7 

Alphasense B 120,181 107,613* 89.5 95.4 

Alphasense C 120,181 106,204* 88.3 92.4 

AirBeam A 120,181 119,548 99.5 100.0 

AirBeam B 120,181 119,689 99.6 100.0 

AirBeam C 120,181 119,689 99.6 100.0 

* Data recovery for the Alphasense was lower during the first half of the study due to an issue related to 
communication with the data logger.   

Drift 

Drift refers to a gradual change in sensor response to the same pollutant concentration over time 
and is a common issue for some air quality sensing techniques. Drift in sensor response was 
evaluated by examining whether the relationship between measurements from each sensor and the 
BAM-1020 PM10 and GRIMM PM2.5 changed substantially over time. Examination of the Alphasense 
PM10 and PM2.5 data revealed that all three Alphasense sensors exhibited modest drift over the study 
period. Figure 19 illustrates drift from the Alphasense B sensor by showing the relationship between 
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the BAM-1020 and Alphasense B PM10 near the beginning of the study and near the end of the 
study. The response of the Alphasense B sensor relative to the BAM-1020 decreased slowly over the 
length of the study. Similarly, the AirBeam sensor also exhibited modest drift when compared with 
PM2.5 concentrations reported by the GRIMM, although to a lesser extent than the Alphasense. Drift 
in sensor response may indicate sensor degradation over time; however, it could also indicate a 
difference in sensor response related to a change in particle morphology or composition over the 
course of the study. STI contacted Alphasense regarding the drift issue; Alphasense noted that they 
have seen dust collect on the photodiode or the laser over time under very high PM conditions but 
would expect the correlation to have decreased if this were an issue for this study. They noted that 
dust can gather on the fan and impact the fan’s performance and subsequent airflow, which would 
impact the magnitude of the sensor response. A future study could collect sample flow rate data for 
the Alphasense sensors to determine whether dust collection on the fan impacts sensor response in 
the Santa Barbara County area. Note that this issue could be of less concern if the sensor were used 
as a handheld sensor to collect data at periodic intervals rather than being sited at a location for 
operation 24 hours a day. 

Drift in sensor response weakens the correlation between the sensor and the BAM-1020 over the 
entire study period, shown in Figure 16 (R2 = 0.67). Correlations between a sensor and BAM-1020 are 
stronger over a shorter time period (e.g., in Figure 19, one week) than over the full three-month 
study (Figure 16); drift contributes to the weaker correlation over the entire study.  

 

Figure 19. Comparison between hourly PM10 concentrations from the BAM-1020 and 
Alphasense B sensor near the beginning of the study (April 21-27; blue) and near the end of 
the study (June 30–July 6; pink).   
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3.2.4 Potential Use for Early Detection 

To investigate whether the sensors could be useful for detecting high PM concentration events, we 
examined sensor response on 10 occasions when the BAM-1020 recorded PM10 concentrations 
above 200 μg/m3. As an example, Figure 20 shows PM10 concentrations recorded by the three 
Alphasense sensors and the BAM-1020 during the evening hours on June 10, 2016. The BAM-1020 
samples between minutes 0 and 52—for example, the values shown between 9:00 p.m. and 9:59 
p.m.—were collected from 9:00 p.m. to 9:52 p.m. Figure 20 illustrates that background PM 
concentrations are typically low, and that high concentration episodes are typically short in duration 
(less than one hour). High temporal resolution measurements, less than 1 hour in duration, are better 
than 1-hr measurements for characterizing these events. In the June 10 example, Alphasense A 
recorded a peak concentration at 9:21 p.m., 39 minutes before the 1-hr measurement from the BAM-
1020 would be available. Since the BAM-1020 does not sample eight minutes out of 60, it will miss 
short-duration events 13% of the time. The other 87% of the time, the 1-min data provided by 
sensors offer early detection of high concentration episodes, an average of 34 minutes in advance of 
BAM-1020 measurements.    

  

Figure 20. Hourly PM10 concentrations measured by the BAM-1020 and 1-min average PM10 
concentrations measured by the three Alphasense sensors on June 10, 2016. The BAM-1020 
measurements at 21:00 would have been available at 22:00. 
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Figure 21 shows measurements from the three Alphasense sensors and the BAM-1020 on the 
morning of June 23. High PM10 concentrations were measured between 6:00 and 7:00 a.m. by all 
three Alphasense sensors and the BAM-1020; however, the Alphasense sensors also reported peak 
concentrations at 6:59 a.m. when the BAM-1020 was not sampling. This example illustrates that in 
some cases, brief events occurring at the end of an hour will be missed by the BAM-1020 because of 
its sampling period.  

  

Figure 21. Hourly PM10 concentrations measured by the BAM-1020 and 1-min average PM10 
concentrations measured by the three Alphasense sensors on June 23, 2016. 
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4. Conclusions and Discussion 

This study found that the low-cost PM sensors are capable of detecting high PM concentration 
episodes related to windblown dust in Santa Barbara County. Comparisons between hourly data from 
the sensors and the BAM-1020 reference PM10 instrument showed that the sensor data is highly 
correlated with the BAM-1020 measurements; the Alphasense sensor was better correlated since it 
measures PM10, whereas the AirBeam only measures PM2.5. Data recovery from the sensors was high 
(>99%) for the two types of sensors tested once data transmission issues had been resolved, 
suggesting that data completeness from sensors is sufficiently high to reliably detect dust events. 
Comparisons between sensor and BAM-1020 measurements show that the sensors are capable of 
detecting events as much as 59 minutes before the time when BAM-1020 measurements would be 
available and that in some cases, the sensors captured high concentration dust events that were 
missed by the BAM-1020. These findings suggest that the sensors could be used as part of an early 
warning system to inform decisions to reduce exposure to high PM concentrations. 

Comparisons among sensors indicate that the sensor precision is sufficiently high over a 1-min 
averaging period (R2 = 0.81-0.95) that the sensors could be used in a network to monitor the spatial 
variability of PM and identify PM hotspots. However, this pilot study characterized sensor 
performance over a three-month period. The long-term reliability of the sensors was not tested. 
Analysis of the sensor data revealed that some drift occurs; however, drift did not impact the ability 
of the sensor to detect dust events over the three-month duration of this study.  

We recommend focusing on the Alphasense PM sensor over the AirBeam for future studies and use 
because of the good performance results and because it can characterize both PM2.5 and PM10. The 
fact that the data from the sensors correlated well with the federal equivalent method BAM-1020 
data indicates that sensors could be used to gather localized data to augment the information 
available from the regional monitoring network. 

A long-term goal was to create a network of low-cost PM sensors to warn school personnel and 
others of high PM concentrations. While this project demonstrated that low-cost PM sensors can 
detect dust, a number of additional actions are needed to reach this goal: 

• Conduct a year-long study to assess the long-term sensor reliability and performance for 
detecting high PM concentrations related to dust events.   

• Deploy a network of at least 6 to 10 sensor nodes to examine the spatial variability of the PM 
events. 

• Design a notification system (websites and alerting system). Get feedback from school 
officials and air district staff. Create the notification system and operate it on a pilot basis for 
the year-long study. 

• Survey school officials on the usefulness of the notification system and make appropriate 
changes. 



● ● ●    4. Conclusions and Discussion 

● ● ●    26 

• Evaluate the sensor performance over the year-long period by examining data completeness, 
maintenance, quality, cost, and reliability.
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5. School Participation 

To engage Cuyama Valley High School students and teachers, SBCAPCD and STI made two visits to 
Cuyama Valley High School to demonstrate monitoring equipment and share an overview of the 
monitoring study and study findings. During the first visit on June 1, 2016, SBCAPCD and STI staff 
showed science students the sensor study equipment in place at the school monitoring site 
(Figure 22) and explained the goals and methods for the measurement study. 

 
Figure 22. STI and SBCAPCD staff showing students the sensor equipment in June 2016. 

The second visit occurred on November 2, 2016, when SBCAPCD staff spent a morning with Cuyama 
Valley High School physics students to provide an overview of the study and the objectives, and to 
describe some of the findings from the study (Figure 23). SBCAPCD staff also asked students for 
input on what information from the analysis results might be of most use to the students and 
teacher. 
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Figure 23. SBCAPCD staff talking to the students about air pollution and the sensor study 
during a visit to the school in November 2016. 

During a presentation to the students, SBCAPCD discussed the following topics: 

• SBCAPCD’s mission and jurisdiction  
• Various types of air pollution, with a focus on PM 
• Sources of PM 
• Health effects of PM exposure 
• How PM has been measured and monitored historically 
• Study questions and overview  
• Monitoring equipment and sensors used  
• Sensor performance, including precision, accuracy, and drift 
• Reliability of the AlphaSense and AirBeam sensors 
• Study conclusions 

Following the presentation, staff showed the students a BAM-1020 reference instrument and two 
AirBeam PM sensors, synced with tablets for real-time data monitoring. Staff also showed the 
students a 400E Teledyne API ozone analyzer (Figure 24).  
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Figure 24. SBCAPCD staff showing students air quality instrumentation. 

Seeing the different equipment side-by-side prompted questions from the students, including 
whether PM levels are elevated during sports practices or other outdoor activities. To allow the 
students to answer this question and to foster further discussion among the class, STI developed a 
data set for the students to analyze. Given the large volume of data collected during the study (see, 
for example, Table 3) and associated data analysis challenges of working with such a large volume of 
data, STI condensed the study data into a more manageable data set for the students to work with. 
To this end, STI provided a Microsoft Excel worksheet containing hourly average PM2.5 concentrations 
from the BAM-1020, PM2.5 concentrations from one Alphasense sensor (Alphasense A), PM10 
concentrations from one AirBeam sensor (AirBeam A), wind direction, and wind speed (Figure 25).  
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Figure 25. The Microsoft Excel spreadsheet shared with Cuyama Valley High School physics 
students. 

As an example of an exercise that the class could complete with the data, STI also provided the 
teacher a second spreadsheet containing pre-calculated diurnal profiles for the entire study for the 
BAM-1020, Alphasense A, and AirBeam A, as well as a bar graph of the results (Figure 26). The 
diurnal profiles for PM10 and PM2.5 are similar, indicating that PM concentrations at Cuyama Valley 
High School tend to be higher in the mornings than in the afternoon and evening hours, peaking at 
6:00 a.m.  
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Figure 26. Average diurnal profiles for PM from April 14, 2016, to July 6, 2016. 
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