The Need to Reduce Marine Shipping Emissions: A Santa Barbara County Case Study

Tom Murphy Santa Barbara County Air Pollution Control District November 2005

Ships in the SB Channel

Overview

- The problem
- Clean air planning process
- 2004 marine shipping inventory
- Regulatory efforts
- Technologies and challenges
- Demonstration project
- Conclusions

The Problem

- Over 7,200 annual traverses
- 130 miles of coastline
- Large 2-stroke engines
- Vessels burning heavy bunker fuels
- Slow turnover rates
- Majority of the vessels are foreign flagged
- Trade volumes expected to continue increasing

Typical Great Circle Route

California Coastal Waters

Clean Air Planning Process

- Attainment state and federal standards
- Develop emission inventories
- Evaluate emission control measures
- Forecast emissions
- Marine shipping contribution: Large and growing
- June 2007 Next Clean Air Plan

Santa Barbara County NOx * Emissions Comparison

* NOx = Onshore + OCS

Santa Barbara County NOx * Emission Forecast

2004 Marine Shipping Inventory

- Over 7,200 transits
- 9% of vessels = 50% NOx emissions
- 59 vessels over 50 tons of NOx in 2004
- 92% of NOx from foreign flagged vessels
- About 19 transits per day
- About 40 tons of NOx and 3 tons of PM emitted daily

Ship Type Analysis

Port Hueneme

- "Niche" Port
 - #1 port in nation for citrus exports
 - Top ten in imports of autos & bananas
- Nearly tripled cargo weight and value between 1990 & 2001
- 35' depth limits vessel types
- Vessel types: Reefer, ro-ro, older containerships
- About 340 calls in 2004
- About 7% of total US vehicle carrier port calls and capacity (DWT x calls) in 2004

Common Ship Types

Future?

*MAP: USGS. Report on Hazards Offshore California's Ventura County Coast Compiled in Response to Congressional Request. Nov. 2004.

Regulatory Efforts

IMO

MARPOL Annex VI

- Entered into force on May 19, 2005
- Sets limits for SOx and NOx from vessels built or modified after 1/1/2000
- Currently 27 countries have ratified
- US, Canada & Mexico have <u>NOT</u> ratified treaty yet
- By 2007 revisions that will be considered include:
 - PM, VOC, GHG limits & tougher NOx & SOx limits
 - In-use engine applicability

US EPA

- Category 3 Engine Rulemaking
 - Tier 1 standards = IMO standards
 - Tier 2 standards expected 2007
- SECA application development (2007 submittal)

Regulatory Efforts

California Air Resources Board (ARB)

- Air Toxic Control Measures (ATCM)
 - Developing aux. engine ATCM (Dec. 2005)
 - Cargo handling equipment ATCM (Dec. 2005)
 - Cruise ship on-board Incineration ATCM (Nov. 2005)
 - Frequent flyer vessel ATCM (2006)
- Research
 - CA ocean-going vessel emission inventory (Fall 2005)
 - Modeling & Health / Ecological impact (Spring 2006)
 - SECA development collaboration with EPA

Potential Control Technologies

- Water based controls
 - Emulsified fuels
 - Water injection
 - Humidification
- Slide valves
- Exhaust gas recirculation
- Selective catalytic reduction
- Cleaner fuels, oxidation catalysts

Technology Challenges

- Quick installation
- Reliability
- Low maintenance
- Safety
- Pollutant trade-offs
- Fuel consumption
- Industry buy-in

Demonstration Project

Objectives

- Demonstrate emission controls
- Develop support for potential economic incentive programs
- Develop in-use testing protocol

Participants

- U.S. EPA, MARAD
- ARB, Ports, CA Air districts
- Ship operator
- Engine manufacturer

Technology: Slide Valves

Already in use
Reduce PM by 30 - 50%
Fuel efficient design
Cost-effective
Easy to install
\$96,000 for 22 valves

Technology: Water Emulsion System

•Reduce NOx up to 30%

•Being considered for Main engine

•Designed by engine manufacturer

•Small loss in power possible

•Approx. \$555,000 for the system

Cost-effective

* <u>Source</u>: Visual Study on Combustion of Low-Grade Fuel Water Emulsion, Hiroshi Tajima, Koji Takasaki, Masayoshi Nakashima, Keiichiro Kawano Makoto Ohishi, Jun Yanagi and Shin-nosuke Osaf, 2001

In-cylinder temp. distribution*

Projects Evaluated

Ship Name	Ship type	Built	Power (hp)	DWT* / TEU	Engine	Control technology	Hardware Cost	NOx reductions	PM reductions
Matson/ R.J. Pfeiffer	Container	1992	34,160	28,555 / 2,319 TEU	MAN B&W 8L80MC	Seaworthy water emulsion system	~\$400,000	25%-35%	n/a
APL CHINA	Container	1995	66,398	66,520 / 5,418 TEU	MAN B&W 11K90MC-C	MAN B&W water emulsion system and slide valves	\$742,300	25%	25-35%
APL KOREA	Container	1995	66,398	66,520 / 5,418 TEU	MAN B&W 11K90MC-C	MAN B&W water emulsion system and slide valves	\$742,300	25%	25-35%
APL JAPAN	Container	1995	66,398	66,520 / 5,418 TEU	MAN B&W 11K90MC-C	MAN B&W water emulsion system and slide valves	\$742,300	25%	25-35%
SeaRiver Long Beach	Tanker	1987	31,650	214,682/ TEU_n/a	Sulzer 8RTA84	Seaworthy water emulsion system for engine + boiler	\$442,500	25%-35%	30% (boiler)

* Deadweight Tonnage (DWT): The weight in tonnes (1000 kg) of cargo, stores, fuel,

Challenges

- Ship owner participation
- Funding sponsors & cooperative agreements
- Project scope & priorities
- Limited emission test data available
- Vessel down time and schedule delays
- Vessel route stability
- Project life

Conclusions

- Marine shipping emissions are significant & growing
- Regulatory efforts largely ineffective to date
- Cost effective control technologies available
- Significant capital expenditure
- Technology & implementation challenges
- Pursuing a partnership approach
- Once proven, additional partnerships and incentives programs needed

Questions ?

Photo by Steve Ringman, The Seattle Times