

air pollution control district

PERMIT TO OPERATE 8240-R12

and

PART 70 RENEWAL OPERATING PERMIT 8240

PACIFIC COAST ENERGY COMPANY LP **ORCUTT HILL STATIONARY SOURCE**

NEWLOVE LEASE - NON THERMAL (Part I)

ORCUTT HILL/CASMALIA OILFIELDS SANTA BARBARA COUNTY, CALIFORNIA

OPERATOR

Pacific Coast Energy Company LP

OWNERSHIP

Pacific Coast Energy Company LP

Santa Barbara County **Air Pollution Control District**

(District Permit to Operate) (Part 70 Operating Permit)

June 2024

PART I – NON-THERMAL NEWLOVE LEASE

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Purpose	1
1.2	FACILITY OVERVIEW	
1.3	Emission Sources	6
1.4	Emission Control Overview	6
1.5	OFFSETS/EMISSION REDUCTION CREDIT OVERVIEW	7
1.6	PART 70 OPERATING PERMIT OVERVIEW	7
2.0	PROCESS DESCRIPTION	8
2.1	Process Summary	
2.2	SUPPORT SYSTEMS	
2.3	MAINTENANCE/DEGREASING ACTIVITIES	
2.4	PLANNED PROCESS TURNAROUNDS	
2.5	Other Processes	9
2.6	DETAILED PROCESS EQUIPMENT LISTING	
3.0	REGULATORY REVIEW	9
3.1	RULE EXEMPTIONS CLAIMED	9
3.2	COMPLIANCE WITH APPLICABLE FEDERAL RULES AND REGULATIONS	
73.3		
3.4	COMPLIANCE WITH APPLICABLE DIATE ROLLS AND REGULATIONS	
3.5	Compliance History	
4.0	ENGINEERING ANALYSIS	
4.1	General	
4.1 4.2	GENERAL	
4.2	FUGITIVE HYDROCARBON SOURCES	
4.3	TANKS/VESSELS/SUMPS/SEPARATORS	
4.5	OTHER EMISSION SOURCES	
4.6	VAPOR RECOVERY/CONTROL SYSTEMS	
4.7	BACT/NSPS/NESHAP/MACT	
4.8	CEMS/Process Monitoring/CAM	
4.9	SOURCE TESTING/SAMPLING	
4.10		
5.0	EMISSIONS	24
5.1	GENERAL	24
5.2	PERMITTED EMISSION LIMITS - EMISSION UNITS	
5.2	PERMITTED EMISSION LIMITS - FACILITY TOTALS	
5.4	PART 70: HAZARDOUS AIR POLLUTANT EMISSIONS FOR THE FACILITY	
5.5	EXEMPT EMISSION SOURCES/PART 70 INSIGNIFICANT EMISSIONS	
6.0	AIR QUALITY IMPACT ANALYSES	
	Modeling	
6.1 6.2	MODELING INCREMENTS	
6.2 6.3	INCREMENTS	
6.5 6.4	HEALTH RISK ASSESSMENT	
0.7		

7.0	CAP CONSISTENCY, OFFSET REQUIREMENTS AND ERCS	
7.1	General	
7.2	CLEAN AIR PLAN	
7.3	OFFSET REQUIREMENTS	
7.4	Emission Reduction Credits	
8.0	LEAD AGENCY PERMIT CONSISTENCY	
9.0	PERMIT CONDITIONS	40
9.A	STANDARD ADMINISTRATIVE CONDITIONS	
9.B.	GENERIC CONDITIONS	
9.C	REQUIREMENTS AND EQUIPMENT SPECIFIC CONDITIONS	
9.D	DISTRICT-ONLY CONDITIONS	

LIST OF ATTACHMENTS

10.0 **ATTACHMENTS**

- 10.1 **Emission Calculation Documentation**
- Emission Calculation Spreadsheets 10.2
- Equipment List Well List 10.3
- 10.4
- Comments on the Draft Permit/District Responses 10.5

LIST OF FIGURES AND TABLES

Page Number

FIGURE 1.1 - LOCATION MAP FOR THE NEWLOVE LEASE	3
TABLE 1.1 - NEW SOURCE REVIEW OVERVIEW	5
TABLE 3.1 - GENERIC FEDERALLY-ENFORCEABLE DISTRICT RULES	16
TABLE 3.2 - UNIT-SPECIFIC FEDERALLY-ENFORCEABLE DISTRICT RULES	
TABLE 3.3 - NON-FEDERALLY-ENFORCEABLE DISTRICT RULES	18
TABLE 3.4 - ADOPTION DATES OF DISTRICT RULES	19
TABLE 5.1-1 - OPERATING EQUIPMENT DESCRIPTION	
TABLE 5.1-2 - EMISSION FACTORS	
TABLE 5.1-3 - HOURLY AND DAILY EMISSION LIMITS BY EMISSION UNIT	
TABLE 5.1-4 - QUARTERLY AND ANNUAL EMISSION LIMITS BY EMISSION UNIT	29
TABLE 5.2 - TOTAL PERMITTED FACILITY EMISSIONS	32
TABLE 5.5-1 - EQUIPMENT HAP EMISSION FACTORS	
TABLE 5.5-2 - HOURLY AND ANNUAL HAP EMISSIONS	

ABBREVIATIONS/ACRONYMS

AP-42	USEPA's Compilation of Emission Factors
District	Santa Barbara County Air Pollution Control District
API	American Petroleum Institute
ASTM	American Society for Testing Materials
BACT	Best Available Control Technology
bpd	barrels per day (1 barrel = 42 gallons)
CAM	
-	compliance assurance monitoring
CEMS	continuous emissions monitoring
dscf	dry standard cubic foot
EU	emission unit
gal	gallon
gr	grain
HAP	hazardous air pollutant (as defined by CAAA, Section 112(b))
H_2S	hydrogen sulfide
I&M	inspection & maintenance
k	kilo (thousand)
1	liter
lb	pound
lbs/day	pounds per day
lbs/hr	pounds per hour
LACT	Lease Automatic Custody Transfer
LACI	liquid petroleum gas
M	thousand
MACT	Maximum Achievable Control Technology
MM	million
MW	molecular weight
NEI	net emissions increase
NG	natural gas
NSPS	New Source Performance Standards
O_2	oxygen
OCS	outer continental shelf
PM	particulate matter
PM_{10}	particulate matter less than 10 µm in size
PM _{2.5}	particulate matter less than $2.5 \mu m$ in size
ppm (vd or w)	parts per million (volume dry or weight)
psia	pounds per square inch absolute
psig	pounds per square inch gauge
PRD	pressure relief device
РТО	Permit to Operate
RACT	Reasonably Available Control Technology
ROC	reactive organic compounds, same as "VOC" as used in this permit
RVP	Reid vapor pressure
scf	standard cubic foot
scfd (or scfm)	standard cubic feet per day (or per minute)
SIP	State Implementation Plan $(20.02 \text{ in shear of mercury})$
STP	standard temperature (60° F) and pressure (29.92 inches of mercury)
THC	Total hydrocarbons
tpy, TPY	tons per year
TVP	true vapor pressure
USEPA	United States Environmental Protection Agency
VE	visible emissions
VRS	vapor recovery system

1.0 Introduction

1.1 Purpose

<u>General</u>: The Santa Barbara County Air Pollution Control District (District) is responsible for implementing all applicable federal, state and local air pollution requirements which affect any stationary source of air pollution in Santa Barbara County. The federal requirements include regulations listed in the Code of Federal Regulations: 40 CFR Parts 50, 51, 52, 55, 61, 63, 68, 70 and 82. The State regulations may be found in the California Health & Safety Code, Division 26, Section 39000 et seq. The applicable local regulations can be found in the District's Rules and Regulations. This is a combined permitting action that covers both the Federal Part 70 permit (renewal of *Part 70 Operating Permit 8240*) as well as the State Operating Permit (reevaluation of *Permit to Operate 8240*). Santa Barbara County is designated as a non-attainment area for the state PM10 ambient air quality standard. As of July 1, 2020, the County achieved attainment status for the ozone state ambient air quality standards.

<u>Part 70 Permitting</u>: The initial Part 70 permit for this facility was issued on May 22, 1999 in accordance with the requirements of the District's Part 70 operating permit program. This permit is the seventh renewal of the Part 70 permit, and may include additional applicable requirements and associated compliance assurance conditions. This permit consists of two parts: Part I addresses the original Newlove Lease, also referred to as the *Non-Thermal* portion of the facility, and Part II, which consists of modifications at this lease permitted under PTO 12084 and referred to as the *Diatomite Project*. Due to the size and complexity of PTO 12084, Sections 1 (Introduction) through Section 9.C (Equipment Specific Conditions) of PTO 12084 have been incorporated, in their entirety, as Part II of this permit.

The Newlove Lease is a part of the Pacific Coast Energy Company - Orcutt Hill Stationary Source, which is a major source for VOC^1 , NO_X and CO. Conditions listed in this permit are based on federal, state or local rules and requirements. Sections 9.A, 9.B and 9.C of this permit (Part I and Part II) are enforceable by the District, the USEPA and the public since these sections are federally-enforceable under Part 70. Where any reference contained in Sections 9.A, 9.B or 9.C refers to any other part of this permit, that part of the permit referred to is federallyenforceable. Conditions listed in Section 9.D are "District-only" enforceable.

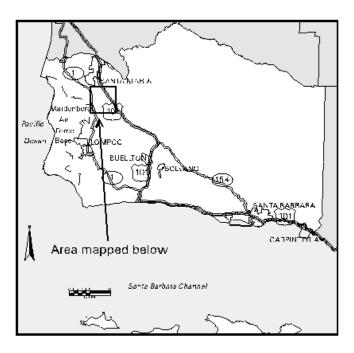
Pursuant to the stated aims of Title V of the CAAA of 1990 (i.e., the Part 70 operating permit program), this Part 70 permit renewal has been designed to meet two objectives. First, compliance with all conditions in this permit would ensure compliance with all federally-enforceable requirements for the facility. Second, the permit would be a comprehensive document to be used as a reference by the permittee, the regulatory agencies and the public to assess compliance.

This reevaluation incorporates greenhouse gas emission calculations for the stationary source. On January 20, 2011, the District revised Rule 1301 to include greenhouse gases (GHGs) that are

¹ VOC as defined in Regulation XIII has the same meaning as reactive organic compounds as defined in Rule 102. The term ROC shall be used throughout the remainder of this document, but where used in the context of the Part 70 regulation, the reader shall interpret the term as VOC.

"subject to regulation" in the definition of "Regulated Air Pollutants". District Part 70 operating permits incorporate the revised definition.

1.2 Facility Overview


1.2.1 <u>General Overview</u>: The Newlove Lease, located approximately 2.5 miles south of the city of Orcutt, was previously owned and operated for many years by Unocal. Several transfers of ownership/operator have since taken place and are listed below. The most recent change was a name change only from Breitburn Energy to Pacific Coast Energy Company (PCEC) which occurred in December 2011.

Date of Transfer	New Owner	New Operator
April 9, 1996	Nuevo Energy Company	Torch Operating Company
February 27, 2001	Nuevo Energy Company	Nuevo Energy Company
September 30, 2003	ERG Operating Company	ERG Operating Company
November 5, 2004	BreitBurn Energy	BreitBurn Energy
December 1, 2011	Pacific Coast Energy	Pacific Coast Energy

For District regulatory purposes, the facility is located in the Northern Zone of Santa Barbara County². Figure 1.1 shows the relative location of the facility within the county.

² District Rule 102, Definition: "Northern Zone"

PACIFIC COAST ENERGY- ORCUTT HILL and CASMALIA OIL FIELDS STATIONARY SOURCE

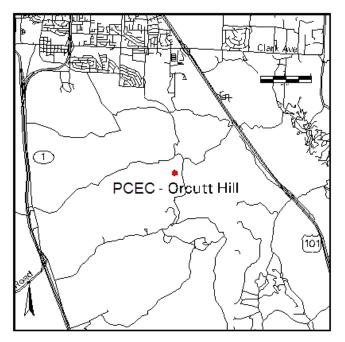


Figure 1.1 Location Map for the Newlove Lease

The Pacific Coast Energy Company - Orcutt Hill and Casmalia Oil Fields Stationary Source (SSID 2667), which was originally developed in the 1920s by Union Oil Company, consists of the facilities listed below. PCEC purchased the Careaga lease in May 2022 and the N.R. Bonetti, Escolle, Escolle (Amrich), Arellanes, Morganti, Casmalia ICEs, Musico and Righetti Leases in February 2024, thereby becoming incorporated into the original PCEC Orcutt Hill Stationary Source which was renamed the Pacific Coast Energy Company - Orcutt Hill and Casmalia Oil Fields Stationary Source.

•	California Coast Lease	(FID 3206)
٠	Fox Lease	(FID 3313)
٠	Dome Lease	(FID 3314)
٠	Folsom Lease	(FID 3316)
٠	Graciosa Lease	(FID 3318)
٠	Hartnell Lease	(FID 3319)
٠	Hobbs Lease	(FID 3320)
٠	Newlove Lease	(FID 3321)
٠	Pinal Lease	(FID 3322)
٠	Rice Ranch Lease	(FID 3323)
٠	Squires Lease	(FID 3324)
٠	Getty-Hobbs Lease	(FID 3495)
٠	Orcutt Hill Compressor Plant	(FID 4104)
٠	Orcutt Hill Internal Combustion Engines	(FID 4214)
٠	Orcutt Hill Steam Generators	(FID 10482)
٠	Orcutt Hill Field (MVFF)	(FID 1904)
٠	Careaga Lease	(FID 1517)
٠	Casmalia ICEs	(FID 4216)
٠	N.R. Bonetti Lease	(FID 4501)
٠	Escolle Lease (Amrich)	(FID 11593)
٠	Escolle Lease	(FID 3315)
٠	Arellanes Lease	(FID 3212)
٠	Morganti Lease	(FID 3303)
٠	Musico Lease	(FID 3304)
٠	Righetti Lease	(FID 3948)

The Newlove Lease consists of the following oil and gas production systems:

- Oil & gas wells
- Oil/water/gas separation systems
- Oil and water storage systems
- Vapor recovery systems
- Oil shipping systems
- Wastewater injection systems
- Gas scrubbing systems
- Gas gathering and shipping systems
- Gas fired steam generators
- Water polishing system

Oil, water and gas are produced from seventy-eight wells on the Newlove Lease by conventional means, i.e., downhole well pumps. These wells, as well as the equipment used to process the

fluids from these wells are separate and distinct from the wells and equipment associated with the Diatomite Project. Electric motors or internal combustion engines power downhole well pumps to augment well production from these wells. Production from these wells, along with production from the Graciosa Lease is piped to the Newlove Lease tank battery where it passes through a gas/liquid separator. The liquids are sent to the wash tanks where oil and water are separated. The oil is piped to the crude tank and the water is sent to the wastewater tank at the Newlove Flats injection facility. Oil is metered at the LACT unit and is shipped from the lease via a pipeline. Wastewater is reinjected into the producing formation at various injection wells. The tanks are connected to the vapor recovery system. The collected vapors and gas from the gas gathering system are piped to the Orcutt Hill Compressor Plant. These are the original wells and equipment at the Newlove Lease and referred to as the *Non-Thermal* operations.

1.2.2 <u>Facility New Source Review Overview</u>: Much of the equipment on the Newlove Lease was in place and operating before a permit to operate was required. However, there have been numerous subsequent equipment installations subject to New Source Review requirements. Table 1.1 provides a summary of the New Source Review history for equipment associated with the non-thermal operations at the Newlove Lease.

Permit	Issuance	Permitted	
Number	Date	Modification	
ATC 4259	11/06/80	Installation of a Wemco flotation cell. This equipment	
		is out of service and no longer included in the Permit to	
		Operate.	
ATC 6416	08/05/85	Installation of vapor recovery on the crude oil tank and	
		three wash tanks.	
ATC 9248	01/05/98	Install vapor recovery on the 10,000 bbl and 1,000 bbl	
		wastewater tanks.	
ATC 11909	01/26/06	Removal of 10K barrel wastewater and replace with	
		new 10K barrel wastewater tank controlled with vapor	
		recovery.	
ATC 12144	02/12/07	Installation of new vapor recovery compressor.	
ATC 12273	07/18/07	Replacement of the existing 3,000 bbl wash tank with	
		new 3,000 bbl wash tank.	
ATC 12354	10/02/07	Replacement of the existing 1,000 bbl wash tank with	
		new 1,000 bbl wash tank.	
ATC 13000	07/17/2009	Install a Thermal Oxidizer	
ATC 13134	06/15/2009	Increase Facility Throughput	
ATC 13140	02/12/2009	Permit 29 Non-Diatomite Wells	
ATC 13230	12/29/2009	Permit 5 Non-Diatomite Wells	
ATC 13368	11/10/2011	Vacuum Truck Washout Pits	
ATC 13397	06/16/2010	Install H ₂ S Scrubber	
ATC 13513	11/04/2010	Install Crude Oil Loading Rack	
PTO 8240-01	03/18/2013	Modify PC C.7 (fuel gas monitoring)	
ATC 14019	05/13/2013	Install Backup VRU	
ATC 14385	10/14/2014	Install Miscellaneous Vessels	
ATC 14693	12/10/2015	Replace floor of 3,000 bbl Wash Tank	

Table 1.1New Source Review Overview

ATC 15506	07/30/2020	Replace existing 3,000 bbl. Wash Tank
ATC 16121	02/26/2024	Replace existing 3,000 bbl. Wash Tank

1.3 Emission Sources

Emissions from equipment associated with the non-thermal operations at the Newlove Lease consist of oil and gas wells and their associated cellars, oil/water/gas separation equipment, tanks, sumps and fugitive emission components, such as process-line valves and flanges. Section 4 of the permit provides the District's engineering analysis of these emission sources. Section 5 of the permit describes the allowable emissions from each permitted emissions unit and also lists the potential emissions from non-permitted emission units.

The emission sources include:

- Seventy-eight oil and gas wells and forty (40) well cellars
- Three (3) wash tanks
- One (1) crude storage tank
- Two (2) wastewater tanks
- One (1) emergency overflow tank
- Six (6) wastewater pits
- One (1) spill catch pan
- Vacuum Truck Washout Pits, Fugitive emission components in gas/liquid hydrocarbon service
- Crude Oil Loading Rack

A list of all permitted equipment is provided in Section 10.3.

1.4 Emission Control Overview

Air quality emission controls are utilized at the Newlove Lease for a number of emission units. The emission controls employed at the facility include:

- → A Fugitive Hydrocarbon Inspection & Maintenance program for detecting and repairing leaks of hydrocarbons from piping components, i.e., valves, flanges and seals, consistent with the requirements of the District Rule 331 to reduce ROC emissions by approximately 80-percent.
- → A vapor recovery/gas collection (VRGC) system to collect reactive organic vapors from the gas/liquid separators and the tanks.
- \rightarrow A program to keep well cellars and emergency pits pumped out consistent with the requirements of District Rule 344.
- → The storage tanks are connected to a vapor recovery system. A 95-percent control efficiency is applied for the use of vapor recovery. The vapors will be sent to the steam generators for destruction.
- → An H₂S scrubber installed at the K-4 compressor (located near well #326H) treats solution gas released from the well fluid streams during processing.

1.5 Offsets/Emission Reduction Credit Overview

The Pacific Coast Energy Company - Orcutt Hill Stationary Source triggers offsets for NO_x and ROC emissions. See section 7.3 for details.

1.6 Part 70 Operating Permit Overview

- 1.6.1 <u>Federally-enforceable Requirements</u>: All federally-enforceable requirements are listed in 40 CFR Part 70.2 (*Definitions*) under "applicable requirements". These include all SIP-approved District Rules, all conditions in the District-issued Authority to Construct permits, and all conditions applicable to major sources under federally promulgated rules and regulations. All these requirements are enforceable by the public under CAAA. (*see Tables 3.1 and 3.2 for a list of federally-enforceable requirements*)
- 1.6.2 Insignificant Emissions Units: Insignificant emission units are defined under District Rule 1301 as any regulated air pollutant emitted from the unit, excluding HAPs, that are less than 2 tons per year based on the unit's potential to emit and any HAP regulated under section 112(g) of the Clean Air Act that does not exceed 0.5 ton per year based on the unit's potential to emit. Insignificant activities must be listed in the Part 70 application with supporting calculations. Applicable requirements may apply to insignificant units.
- 1.6.3 <u>Federal Potential to Emit</u>: The federal potential to emit (PTE) of a stationary source does not include fugitive emissions of any pollutant, unless the source is: (1) subject to a federal NSPS/NESHAP requirement which was in effect as of August 7, 1980, or (2) included in the 29-category source list specified in 40 CFR 70.2. The federal PTE does include all emissions from any insignificant emissions units. None of the equipment at this facility is subject to a federal NSPS/NESHAP requirement, nor is it included in the 29-category list, therefore the federal PTE does not include fugitive emissions. (See Section 5.4 for the federal PTE for this source)
- 1.6.4 <u>Permit Shield</u>: The operator of a major source may be granted a shield: (a) specifically stipulating any federally-enforceable conditions that are no longer applicable to the source and (b) stating the reasons for such non-applicability. The permit shield must be based on a request from the source and its detailed review by the District. Permit shields cannot be indiscriminately granted with respect to all federal requirements. The permittee has not made a request for a permit shield.
- 1.6.5 <u>Alternate Operating Scenarios</u>: A major source may be permitted to operate under different operating scenarios, if appropriate descriptions of such scenarios are included in its Part 70 permit application and if such operations are allowed under federally-enforceable rules. The permittee made no request for permitted alternative operating scenarios.
- 1.6.6 <u>Compliance Certification</u>: Part 70 permit holders must certify compliance with all applicable federally-enforceable requirements including permit conditions. Such certification must accompany each Part 70 permit application; and, be re-submitted annually on the anniversary date of the permit or on a more frequent schedule specified in the permit. A "responsible official" of the owner/operator company whose name and address is listed prominently in the Part 70 permit signs each certification. (*see Section 1.6.9 below*)
- 1.6.7 <u>Permit Reopening</u>: Part 70 permits are re-opened and revised if the source becomes subject to a new rule or new permit conditions are necessary to ensure compliance with existing rules. The permits are also re-opened if they contain a material mistake or the emission limitations or other conditions are based on inaccurate permit application data.

- 1.6.8 <u>Hazardous Air Pollutants (HAPs)</u>: Part 70 permits also regulate emission of HAPs from major sources through the imposition of maximum achievable control technology (MACT), where applicable. The federal PTE for HAP emissions from a source is computed to determine MACT or any other rule applicability.
- 1.6.9 <u>Responsible Official</u>: The designated responsible official and his mailing address is:

Phil Brown Chief Operation Officer Pacific Coast Energy Company 1555 Orcutt Hill Rd. Orcutt, CA 93455

2.0 **Process Description**

2.1 Process Summary

- 2.1.1 <u>Overview</u>: Oil, water, and gas are produced from seventy-eight wells associated with the nonthermal operations on the Newlove Lease. The wells are produced using downhole well pumps powered by electric motors. Forty of the wells are equipped with a well cellar that measures approximately six feet by six feet. Historically, the API gravity of the crude oil is 25° with a gas oil ratio of 501 scf/bbl.
- 2.1.2 <u>Gas, Oil, and Water Separation</u>: The produced oil, water and gas are piped to a central tank battery where it passes through gas/liquid separators. The liquids from the separators are sent to the wash tanks where oil and water are separated. Oil is piped to the crude tanks and the water is sent to the wastewater tanks.
- 2.1.3 <u>Vapor Recovery</u>: The tanks are connected to a vapor recovery system (VRS) equipped with compressor driven electric motors. The VRS is assumed to have a 95-percent control efficiency.
- 2.1.4 <u>Oil and Gas Metering and Shipping</u>: Oil from the crude storage tank is metered through a LACT metering system and is shipped from the lease via pipeline. Vapors collected by the vapor recovery system and gas from the gas gathering system are piped to the Orcutt Hill Compressor Plant.
- 2.1.5 <u>Wastewater Disposal</u>: The water separated in the wash tank is sent to the wastewater tanks. The wastewater is then reinjected into the producing formation.

2.2 Support Systems

There are no additional support systems.

2.3 Maintenance/Degreasing Activities

- 2.3.1 <u>Paints and Coatings</u>: Intermittent surface coating operations are conducted throughout the facility for occasional structural and equipment maintenance needs, including architectural coating. Normally only touch-up and equipment labeling or tagging is performed. All architectural coatings used are in compliance with District Rule 323, as verified through the rule-required recordkeeping.
- 2.3.2 <u>Solvent Usage</u>: Solvents not used for surface coating thinning may be used for daily operations. Usage includes cold solvent degreasing and wipe cleaning with rags.

2.4 Planned Process Turnarounds

Maintenance of critical components is carried out according to the requirements of Rule 331 (*Fugitive Emissions Inspection and Maintenance*) during turnarounds. The permittee has not listed any emissions from planned process turnarounds that should be permitted.

2.5 Other Processes

- 2.5.1 <u>Pits and Sumps</u>: The Newlove Lease is equipped with six wastewater pits and one spill catch pan. Two vacuum truck washout pits are used to separate their liquid contents from their solid contents
- 2.5.2 <u>Unplanned Activities/Emissions:</u> The permittee does not anticipate or foresee any circumstances that would require special equipment use and result in excess emissions.

2.6 Detailed Process Equipment Listing

Refer to Attachment 10.4 for a complete listing of all permitted equipment.

3.0 Regulatory Review

This Section identifies each applicable federal, state and local rule and regulation.

3.1 Rule Exemptions Claimed

- District Rule 202 (*Exemptions to Rule 201*): The following exemptions apply to this facility. An exemption from permit, however, does not necessarily grant relief from any applicable prohibitory rule.
 - Section D.6 De Minimis Exemptions: This section requires PCEC to maintain a record of each *de minimis* change, which shall include emission calculations demonstrating that each physical change meets the criteria listed in the Rule. This exemption applies to a project in the broadest sense. Such records shall be made available to the District upon request. As of June 2020, the de minimis total at the Pacific Coast Energy Company Orcutt Hill Stationary Source is 20.94 lbs ROC/day. This total does not include the previously claimed emissions from the Sx Sands project (ATC 13140).
 - Section D.8 Routine Repair and Maintenance: A permit shall not be required for routine repair or maintenance of permitted equipment, not involving structural changes.
 - Section D.14 Architectural Coatings: Application of architectural coating in the repair and maintenance of a stationary structure is exempt from permit requirements.
 - Section U.2 Degreasing Equipment: Single pieces of degreasing equipment, which use unheated solvent, and which: a) have a liquid surface area of less than 1.0 square foot unless the aggregate liquid surface area of all degreasers at a stationary source, covered by this exemption is greater than 10 square feet; and b) use only organic solvents with an initial boiling point of 302° F or greater; or c) use materials with a volatile organic compound content of two-percent or less by weight as determined by EPA Method 24.
 - Section U.3 Wipe Cleaning: Equipment used in wipe cleaning operations provided that the solvents used do not exceed 55 gallons per year. The permittee shall maintain records of the amount of solvents used for each calendar year. These records shall be kept for a minimum of 3 years and be made available to the District on request.

In addition, the following two Rule 202 permit exemptions may apply:

- Section F.1.c Internal Combustion Engines: Engines used to propel vehicles, as defined in Section 670 of the California Vehicle Code, but not including any engine mounted on such vehicles that would otherwise require a permit under the provisions of District Rules and Regulations.
- Section F.2 Portable Internal Combustion Engines: Portable ICEs eligible for statewide registration pursuant to Title 13, Section 2450 *et seq.*, and not integral to the stationary source operations.

The following Rule exemptions have been approved by the District:

- District Rule 321 (*Solvent Cleaning Operations*): Section D.4 exempts solvent wipe cleaning operations from the requirements of this rule.
- District Rule 331 (*Fugitive Emission Inspection and Maintenance*): The following exemptions were applied for in the permittee's Inspection and Maintenance Plan and approved by the District:
 - Section B.2.b for components buried below the ground.
 - Section B.2.c for stainless steel tube fittings.
- District Rule 343 (*Petroleum Storage Tank Degassing*): The original storage tanks are subject to a District-approved tank degassing plan.
- District Rule 344 (*Petroleum Sumps, Pits and Well Cellars*): The post primary sumps and pits at the Newlove Lease have surface areas less than 1,000 sq. ft., and thus are exempt from this rule based on Section B.4. For future modifications, compliance with District Regulation VIII (*New Source Review*), ensures that future modifications to the facility will comply with these regulations.

3.2 Compliance with Applicable Federal Rules and Regulations

- 3.2.1 <u>40 CFR Parts 51/52 {*New Source Review (Nonattainment Area Review and Prevention of Significant Deterioration)*}</u>: The Newlove Lease was constructed and permitted prior to the applicability of these regulations. All modifications are subject to the District's New Source Review regulation. Compliance with the regulation assures compliance with 40 CFR 51/52.
- 3.2.2 <u>40 CFR Part 60 {*New Source Performance Standards*</u>): The original tanks at the Newlove Lease were installed prior to the applicability of Subpart K, Ka and Kb. Any new or replacement tank is subject to subpart Kb.
- 3.2.3 <u>40 CFR Part 61 {*NESHAP*</u>: This facility is not currently subject to the provisions of this Subpart.
- 3.2.4 <u>40 CFR Part 63 {*MACT*}</u>: On June 17, 1999, EPA promulgated Subpart HH, National Emission Standards for Hazardous Air Pollutants (NESHAPS) for Oil and Natural Gas Production and Natural Gas Transmission and Storage. This facility currently is not subject to the provisions of this Subpart. Information was submitted on March 26, 2002 indicating its source is exempt from the requirements of MACT because they demonstrated that this facility is not a "major source" as defined in 40 CFR 63.761. The permittee verified that this lease does not store crude oil with an

API gravity of 40° or greater, and does not have a glycol reboiler. On March 27, 2002 the District issued a letter agreeing to this exemption.

- 3.2.5 <u>40 CFR Part 64 {Compliance Assurance Monitoring}</u>: This rule became effective on April 22, 1998. This rule affects emission units at the source subject to a federally-enforceable emission limit or standard that uses a control device to comply with the emission standard, and either precontrol or post-control emissions exceed the Part 70 source emission thresholds. Compliance with this rule was evaluated and it was determined that no emission units at this facility are currently subject to CAM. All emission units at this facility have a pre-control emission potential less than 100 tons/year.
- 3.2.6 <u>40 CFR Part 70 {*Operating Permits*}</u>: This Subpart is applicable to the Newlove Lease. Table 3.1 lists the federally-enforceable District promulgated rules that are "generic" and apply to the Newlove Lease. Table 3.2 lists the federally-enforceable District promulgated rules that are "unit-specific" that apply to the Newlove Lease. These tables are based on data available from the District's administrative files and from the permittee's Part 70 Operating Permit renewal application. Table 3.4 includes the adoption dates of these rules.

In its Part 70 permit application, the permittee certified compliance with all existing District rules and permit conditions. This certification is also required of the permittee semi-annually.

3.3 Compliance with Applicable State Rules and Regulations

- 3.3.1 <u>Division 26. Air Resources {California Health & Safety Code}</u>: The administrative provisions of the Health & Safety Code apply to this facility and will be enforced by the District. These provisions are District-enforceable only.
- 3.3.2 <u>California Administrative Code Title 17</u>: These sections specify the standards by which abrasive blasting activities are governed throughout the State. All abrasive blasting activities at the Newlove Lease are required to conform to these standards. Compliance will be assessed through onsite inspections. These standards are District-enforceable only. However, CAC Title 17 does not preempt enforcement of any SIP-approved rule that may be applicable to abrasive blasting activities.
- 3.3.3 Greenhouse Gas Emission Standards for Crude Oil and Natural Gas Facilities (CCR Title 17, Section 95665 et. Seq.): On October 1, 2017, the California Air Resources Board (CARB) finalized this regulation, which establishes greenhouse gas emission standards for onshore and offshore crude oil and natural gas production facilities. On June 22, 2023, the CARB Board adopted amendments to the regulation, which went into effect on April 1, 2024. This facility is subject to the provisions of this regulation. The separators and tanks at this facility satisfy the requirements of the CARB regulation through the use of a vapor collection system. This facility is exempt from the leak detection and repair (LDAR) requirements of the CARB regulation per Section 95669(c)(1), which exempts components, including components found on tanks, separators, wells and pressure vessels, that are subject to District Rule 331 LDAR requirements prior to January 1, 2018. This facility does not utilize circulation tanks for well stimulation treatments, centrifugal natural gas compressors, natural gas powered pneumatic devices or pumps, natural gas only wells, or well casing vents, and is therefore not subject to the CARB regulation standards and requirements for these equipment and processes. The vapor recovery compressors at this facility are rotary vane type compressors which are explicitly excluded from the CARB regulation.

3.4 Compliance with Applicable Local Rules and Regulations

- 3.4.1 <u>Applicability Tables</u>: Tables 3.1 and 3.2 list the federally enforceable District rules that apply to the facility. Table 3.3 lists the non-federally-enforceable District rules that apply to the facility. Table 3.4 lists the adoption date of all rules that apply to the facility.
- 3.4.2 <u>Rules Requiring Further Discussion</u>: This section provides a more detailed discussion regarding the applicability and compliance of certain rules. The following is a rule-by-rule evaluation of compliance for this facility:

<u>*Rule 201 - Permits Required:*</u> This rule applies to any person who builds, erects, alters, replaces, operates or uses any article, machine, equipment, or other contrivance that may cause the issuance of air contaminants. The equipment included in this permit is listed in Attachment 10.3. An Authority to Construct is required to return any de-permitted equipment to service and may be subject to New Source Review.

<u>*Rule 210 - Fees*</u>: Pursuant to Rule 201.G, District permits are reevaluated every three years. This includes the re-issuance of the underlying permit to operate. Also included are the PTO fees. The fees for this facility are based on District Rule 210, Fee Schedule A; however, Part 70 specific costs are based on cost reimbursement provisions (Rule 210.C).

<u>*Rule 301 - Circumvention*</u>: This rule prohibits the concealment of any activity that would otherwise constitute a violation of Division 26 (Air Resources) of the California H&SC and District rules and regulations. To the best of the District's knowledge, the permittee is operating in compliance with this rule.

<u>Rule 302 - Visible Emissions</u>: This rule prohibits the discharge from any single source any air contaminants for which a period or periods aggregating more than three minutes in any one hour which is as dark or darker in shade than a reading of 1 on the Ringlemann Chart or of such opacity to obscure an observer's view to a degree equal to or greater than a reading of 1 on the Ringlemann Chart. Sources subject to this rule include all internal combustion engines at the facility. Improperly maintained diesel engines have the potential to violate this rule. Compliance will be assured by requiring all engines to be maintained according to manufacturer maintenance schedules and by requiring visible emissions inspections of the diesel engines.

<u>*Rule 303 (Nuisance)*</u>: Rule 303 prohibits any source from discharging such quantities of air contaminants or other material in violation of Section 41700 of the Health and Safety Code which cause injury, detriment, nuisance or annoyance to any considerable number of persons or to the public or which endanger the comfort, repose, health or safety or any such persons or the public or which cause or have a natural tendency to cause injury or damage to business or property. Compliance with this rule is assessed through the District's enforcement staff's complaint response program. Based on the source's location, the potential for public nuisance is small.

<u>Rule 304 (Particulate Matter - Northern Zone)</u>: A person shall not discharge into the atmosphere from any source particulate matter in excess of 0.3 grain per cubic foot of gas at standard conditions. It is highly unlikely that gas fired engines will exceed these particulate matter standards.

<u>*Rule 309 - Specific Contaminants*</u>: Under Section "A", no source may discharge sulfur compounds and combustion contaminants (particulate matter) in excess of 0.2 percent as SO₂ (by

volume) and 0.3 gr/scf (at 12% CO₂) respectively. It is unlikely that gas fired engines will exceed these standards.

<u>*Rule 310 - Odorous Organic Compounds*</u>: This rule prohibits the discharge of H_2S and organic sulfides that result in a ground level impact beyond the property boundary in excess of either 0.06 ppmv averaged over 3 minutes and 0.03 ppmv averaged over 1 hour. No measured data exists to confirm compliance with this rule.

<u>Rule 311 - Sulfur Content of Fuels</u>: This rule limits the sulfur content of fuels combusted on the Newlove Lease to 0.5 percent (by weight) for liquids fuels and 50 gr/100 scf (calculated as H_2S) {or 796 ppmvd} for gaseous fuels. All piston IC engines on the lease are expected to be in compliance with the fuel limit as determined by required fuel analysis documentation.

<u>Rule 317 - Organic Solvents</u>: This rule sets specific prohibitions against the discharge of emissions of both photochemically and non-photochemically reactive organic solvents (40 lb/day and 3,000 lb/day respectively). Solvents may be used on the lease during normal operations for degreasing by wipe cleaning and for use in paints and coatings in maintenance operations. There is the potential to exceed the limits under Section B.2 during significant surface coating activities. The permittee will be required to maintain records to ensure compliance with this rule.

<u>Rule 321 - Solvent Cleaning Operations</u>: This rule, revised June 2012, fulfills the commitment in the 2001 and 2004 Clean Air Plans to implement requirements for solvent cleaning machines and solvent cleaning. The revised rule contains solvent reactive organic compounds (ROCs) content limits, revised requirements for solvent cleaning machines, and sanctioned solvent cleaning devices and methods. These proposed provisions apply to solvent cleaning machines and wipe cleaning

<u>Rule 322 - Metal Surface Coating Thinner and Reducer</u>: This rule prohibits the use of photochemically reactive solvents for use as thinners or reducers in metal surface coatings. The permittee will be required to maintain records during maintenance operations to ensure compliance with this rule.

<u>Rule 323.1 (Architectural Coatings)</u>: This rule sets the standards for any architectural coating that is supplied, sold, offered for sale, or manufactured for use within the District.

<u>Rule 324 - Disposal and Evaporation of Solvents</u>: This rule prohibits any source from disposing more than one and a half gallons of any photochemically reactive solvent per day by means that will allow the evaporation of the solvent into the atmosphere. The permittee will be required to maintain records to ensure compliance with this rule.

<u>Rule 325 - Crude Oil Production and Separation</u>: This rule, adopted January 25, 1994, applies to equipment used in the production, gathering, storage, processing and separation of crude oil and gas prior to custody transfer. The primary requirements of this rule are under Sections D and E. Section D requires the use of vapor recovery systems on all tanks and vessels, including wastewater tanks, oil/water separators and sumps. Section E requires that all produced gas be controlled at all times, except for wells undergoing routine maintenance. All of the tanks on this lease are all connected to the vapor recovery system, with the exception of the emergency overflow tank. The emergency overflow tank is out of service. The permittee is required to obtain an ATC and install vapor recovery prior to returning the emergency overflow tank to service. Compliance with Section E is met by directing all produced gas to a sales compressor, injection well or to a flare relief system.

<u>Rule 326 - Storage of Reactive Organic Liquids</u>: This rule applies to equipment used to store reactive organic compound liquids with a vapor pressure greater than 0.5 psia. The tanks on the Newlove Lease are subject to Rule 325, and are therefore are not subject to this rule per Section B.1.c.

<u>Rule 330 - Surface Coating of Metal Parts and Products</u>: This rule sets standards for many types of coatings applied to metal parts and products. In addition to the ROC standards, this rule sets operating standards for application of the coatings, labeling and recordkeeping. Compliance with this rule will be demonstrated through inspections and recordkeeping.

<u>Rule 331 - Fugitive Emissions Inspection and Maintenance</u>: This rule applies to components in liquid and gaseous hydrocarbon service at oil and gas production fields. Ongoing compliance with the many provisions of this rule will be assessed via inspection by the permittee and District personnel using an organic vapor analyzer and through analysis of operator records. The Newlove Lease does not perform any routine venting of hydrocarbons to the atmosphere. All gases routinely vented are directed to the vapor recovery system.

Rule 342 - Control of Oxides of Nitrogen from Boilers, Steam Generators and Process Heaters: This rule applies to boilers, steam generators and process heaters with rated heat inputs greater than or equal to 5 million Btu per hour used in all industrial, institutional and commercial operations. Compliance shall be based on source testing and site inspections.

<u>Rule 343 - Petroleum Storage Tank Degassing</u>: This rule applies to the degassing of any aboveground tank, reservoir or other container of more than 40,000 gallons capacity containing any organic liquid with a vapor pressure greater than 2.6 psia or between 20,000 gallons and 40,000 gallons capacity containing any organic liquid with a vapor pressure greater than 3.9 psia. The permittee's compliance plan, required under Section G, was approved by the District on December 5, 1994.

<u>*Rule 344 - Sumps, Pits and Well Cellars*</u>: Rule 344 requires an inspection and maintenance plan for well cellars. The permittee has instituted a program to monitor well cellars and pump them out if the thickness of the oil/petroleum products exceeds 2 inches or the cellar is over 50-percent full of any liquid. Compliance is determined through required recordkeeping and District inspection.

<u>Rule 352 - Natural Gas-Fired Fan-Type Central Furnaces and Small Water Heaters</u>: This rule applies to new water heaters rated less than 75,000 Btu/hr and new fan-type central furnaces. It requires the certification of newly installed units.

<u>*Rule 353 - Adhesives and Sealants*</u>: This rule applies to the use of adhesives, adhesive bonding primers, adhesive primers, sealants, sealant primers, or any other primers. Compliance shall be based on onsite inspections.

<u>*Rule 505 - Breakdown Conditions*</u>: This rule describes the procedures that the permittee must follow when a breakdown condition occurs to any emissions unit associated with the Newlove Lease. A breakdown condition is defined as an unforeseeable failure or malfunction of (1) any air pollution control equipment or related operating equipment which causes a violation of an emission limitation or restriction prescribed in the District Rules and Regulations, or by State law, or (2) any in-stack continuous monitoring equipment, provided such failure or malfunction:

- a. Is not the result of neglect or disregard of any air pollution control law or rule or regulation;
- b. Is not the result of an intentional or negligent act or omission on the part of the owner or operator;
- c. Is not the result of improper maintenance;
- d. Does not constitute a nuisance as defined in Section 41700 of the Health and Safety Code;
- e. Is not a recurrent breakdown of the same equipment.

<u>Rule 810 - Federal Prevention of Significant Deterioration</u>: This rule, revised June 20, 2013, incorporates the federal Prevention of Significant Deterioration rule requirements into the District's rules and regulations. Future projects at the facility will be evaluated to determine whether they constitute a new major stationary source or a major modification.

3.5 Compliance History

This section contains a summary of the compliance history for this facility and was obtained from documentation contained in the District's administrative file.

- 3.5.1 <u>Facility Inspections</u>. Routine facility inspections were conducted on September 14, 2021, June 8, 2023, and March 7, 2024 since issuance of the previous permit renewal. The reports for these inspections were reviewed as part of the current permit renewal process.
- 3.5.2 <u>Violations</u>: The following enforcement action was issued to this facility since issuance of the previous permit renewal. Compliance has been achieved for these violations.

NOV NO.	Date Issued	Description
#12884	10/08/2021	storing crude oil in a tank not equipped with a leak- free, properly installed, maintained and operated vapor recovery system
#13623	04/10/2024	Failing to control the emissions of produced gas at all times as required by Rule 325.E.1.

- 3.5.3 <u>Variances and Significant Historical Hearing Board Actions</u>: Since the last permit renewal was issued, the facility has been granted the following variances:
 - 2024-04-E: Emergency variance granted for failing to control produced gas at all times on Newlove Well #02.

Generic Requirements	Affected Emission Units	Basis for Applicability
<u>RULE 101</u> : Compliance by Existing Installations	All emission units	Emission of pollutants
RULE 102: Definitions	All emission units	Emission of pollutants
<u>RULE 103</u> : Severability	All emission units	Emission of pollutants
RULE 201: Permits Required	All emission units	Emission of pollutants
<u>RULE 202</u> : Exemptions to Rule 201	Applicable emission units, as listed in form 1302-H of the Part 70 application.	Insignificant activities/emissions, per size/rating/function
RULE 203: Transfer	All emission units	Change of ownership
<u>RULE 204</u> : Applications	All emission units	Addition of new equipment of modification to existing equipment.
<u>RULE 205</u> : Standards for Granting Permits	All emission units	Emission of pollutants
<u>RULE 206</u> : Conditional Approval of Authority to Construct or Permit to Operate	All emission units	Applicability of relevant Rules
<u>RULE 207</u> : Denial of Applications	All emission units	Applicability of relevant Rules
<u>RULE 208</u> : Action on Applications - Time Limits	All emission units. Not applicable to Part 70 permit applications.	Addition of new equipment of modification to existing equipment.
<u>RULE 212</u> : Emission Statements	All emission units	Administrative
RULE 301: Circumvention	All emission units	Any pollutant emission
RULE 302 : Visible Emissions	All emission units	Particulate matter emissions
<u>RULE 303</u> : Nuisance	All emission units	Emissions that can injure, damage or offend.
<u>RULE 304</u> : Particulate matter – Northern Zone	Each PM Source	Emission of PM in effluent gas
<u>RULE 309:</u> Specific Contaminants	All emission units	Combustion contaminant emission
<u>RULE 311:</u> Sulfur Content of Fuel	All combustion units	Use of fuel containing sulfur

Table 3.1 - Generic Federally-Enforceable District Rules

Generic Requirements	Affected Emission Units	Basis for Applicability
<u>RULE 317</u> : Organic Solvents	Emission units using solvents	Solvent used in process operations.
<u>RULE 321</u> : Solvent Cleaning Operations	Emission units using solvents	Solvent used in process operations.
<u>RULE 322</u> : Metal Surface Coating Thinner and Reducer	Emission units using solvents	Solvent used in process operations.
<u>RULE 323.I</u> : Architectural Coatings	Paints used in maintenance and surface coating activities	Application of architectural coatings.
<u>RULE 324</u> : Disposal and Evaporation of Solvents	Emission units using solvents	Solvent used in process operations.
<u>RULE 353:</u> Adhesives and Sealants	Emission units using adhesives and solvents.	Adhesives and sealants used in process operations.
<u>RULE 505.A, B1, D</u> : Breakdown Conditions	All emission units	Breakdowns where permit limits are exceeded.
<u>RULE 603</u> : Emergency Episode Plans	Stationary sources with PTE greater than 100 tpy	Pacific Coast Orcutt Hill is a major source.
<u>RULE 901</u> : New Source Performance Standards (NSPS)	All emission units	Applicability standards are specified in each NSPS.
<u>RULE 1001</u> : National Emission Standards for Hazardous Air Pollutants (NESHAPS)	All emission units	Applicability standards are specified in each NESHAP
<u>REGULATION VIII</u> : New Source Review	All emission units	Addition of new equipment of modification to existing equipment.
REGULATION XIII (RULES 1301- 1305): Part 70 Operating Permits	All emission units	Pacific Coast Orcutt Hill is a major source.

Unit-Specific Requirements	Affected Emission Units	Basis for Applicability
<u>RULE 325</u> : Crude Oil Production and Separation	Wash tank, crude storage tanks, wastewater tanks	Pre-custody transfer oil service tanks with capacities exceeding exemption limits.
<u>RULE 331</u> : Fugitive Emissions Inspection & Maintenance	All components (valves, flanges, seals, compressors and pumps) used to handle oil and gas:	Components emit fugitive ROCs.
<u>RULE 342:</u> Control of Oxides of Nitrogen from Boilers, Steam Generators and Process Heaters	Steam Generator	Steam Generator rated at greater than 5.000 million Btu per hour.
<u>RULE 343</u> : Petroleum Storage Tank Degassing	Wash tank, crude storage tanks, wastewater tanks	Tanks used in storage of organic liquids with vapor pressure > 2.6 psia.
<u>RULE 344</u> : Petroleum Pits, Sumps and Cellars	Well cellars, sump, wastewater pits	Compliance with this rule provides a 70% reduction in well cellar ROC emissions.
<u>RULE 360:</u> Boilers, Water Heaters, and Process Heaters (0.075 - 2 MMBtu/hr)	Any new small boiler installed at the facility.	New units rated from 75,000 Btu/hr to 2.000 MMBtu/hr.

Table 3.2 - Unit-Specific Federally-Enforceable District Rules

Table 3.3 - Non-Federally-Enforceable District Rules

Requirement	Affected Emission Units	Basis for Applicability
<u>RULE 210</u> : Fees	All emission units	Administrative
<u>RULE 310:</u> Odorous Org. Sulfides	All emission units	Emission of organic sulfides
<u>RULE 352</u> : Natural Gas-Fired Fan-Type Central Furnaces and Small Water Heaters	New water heaters and furnaces	Upon installation
RULES 501-504: Variance Rules	All emission units	Administrative
<u>RULE 505.B2, B3, C, E, F, G</u> : Breakdown Conditions	All emission units	Breakdowns where permit limits are exceeded or rule requirements are not complied with.
<u>RULES 506-519</u> : Variance Rules	All emission units	Administrative

Rule No.	Rule Name	Adoption Date
Rule 101	Compliance by Existing Installations: Conflicts	June 1981
Rule 102	Definitions	August 25, 2016
Rule 103	Severability	October 23, 1978
Rule 201	Permits Required	June 21, 2012
Rule 202	Exemptions to Rule 201	August 25, 2016
Rule 203	Transfer	April 17, 1997
Rule 204	Applications	April 17, 1997
Rule 205	Standards for Granting Permits	April 17, 1997
Rule 206	Conditional Approval of Authority to Construct or Permit to Operate	October 15, 1991
Rule 208	Action on Applications - Time Limits	April 17, 1997
Rule 212	Emission Statements	October 20, 1992
Rule 301	Circumvention	October 23, 1978
Rule 302	Visible Emissions	June 1981
Rule 303	Nuisance	June 1981
Rule 304	Particulate Matter – Northern Zone	October 23, 1978
Rule 309	Specific Contaminants	October 23, 1978
Rule 310	Odorous Organic Sulfides	October 23, 1978
Rule 311	Sulfur Content of Fuels	October 23, 1978
Rule 317	Organic Solvents	October 23, 1978
Rule 321	Solvent Cleaning Operations	September 20, 2010
Rule 322	Metal Surface Coating Thinner and Reducer	October 23, 1978
Rule 323.I	Architectural Coatings	June 19, 2014
Rule 324	Disposal and Evaporation of Solvents	October 23, 1978
Rule 325	Crude Oil Production and Separation	July 19, 2001
Rule 326	Storage of Reactive Organic Compound Liquids	July 19, 2001
Rule 328	Continuous Emissions Monitoring	October 23, 1978

 Table 3.4 - Adoption Dates of District Rules Applicable at Issuance of Permit

Rule No.	Rule Name	Adoption Date
Rule 330	Surface Coating of Metal Parts and Products	June 12, 2012
Rule 331	Fugitive Emissions Inspection and Maintenance	December 10, 1991
Rule 333	Control of Emissions from Reciprocating Internal Combustion Engines	June 19, 2008
Rule 342	Control of Oxides of Nitrogen (NOx) from Boilers, Steam Generators and Process Heaters	June 20, 2019
Rule 343	Petroleum Storage Tank Degassing	December 14, 1993
Rule 344	Petroleum Sumps, Pits and Well Cellars	November 10, 1994
Rule 352	Natural Gas-Fired Fan-Type Central Furnaces and Small Water Heaters	October 20, 2011
Rule 353	Adhesives and Sealants	June 21, 2012
Rule 360	Boilers, Water Heaters, and Process Heaters (0.075 - 2 MMBtu/hr)	March 15, 2018
Rule 361	Small Boilers, Steam Generators and Process Heaters	June 20, 2019
Rule 505	Breakdown Conditions (Section A, B1 and D)	October 23, 1978
Rule 603	Emergency Episode Plans	June 15, 1981
Rule 801	New Source Review	August 25, 2016
Rule 802	Nonattainment Review	August 25, 2016
Rule 803	Prevention of Significant Deterioration	August 25, 2016
Rule 804	Emission Offsets	August 25, 2016
Rule 805	Air Quality Impact and Modeling	August 25, 2016
Rule 806	Emission Reduction Credits	August 25, 2016
Rule 808	New Source Review for Major Sources of Hazardous Air Pollutants	May 20, 1999
Rule 810	Federal Prevention of Significant Deterioration (PSD)	June 20, 2013
Rule 901	New Source Performance Standards (NSPS)	September 20, 2010
Rule 1001	National Emission Standards for Hazardous Air Pollutants (NESHAPS)	October 23, 1993
Rule 1301	General Information	August 25, 2016
Rule 1302	Permit Application	November 9, 1993
Rule 1303	Permits	November 9, 1993

Rule No.	Rule Name	Adoption Date
Rule 1304	Issuance, Renewal, Modification and Reopening	November 9, 1993
Rule 1305	Enforcement	November 9, 1993

4.0 Engineering Analysis

4.1 General

The engineering analyses performed for this permit were limited to the review of:

- \rightarrow facility process flow diagrams
- \rightarrow emission factors and calculation methods for each emissions unit
- → emission control equipment (including RACT, BACT, NSPS, NESHAP, MACT)
- \rightarrow emission source testing, sampling, CEMS, CAM
- \rightarrow process monitors needed to ensure compliance

Unless noted otherwise, default ROC/THC reactivity profiles from the District's document titled "*VOC/ROC Emission Factors and Reactivities for Common Source Types*" dated July 13, 1998 (ver 1.1) was used to determine non-methane, non-ethane fraction of THC.

4.2 Stationary Combustion Sources

4.2.1 <u>General</u>: There are no combustion sources associated with the non-thermal operations on the Newlove Lease. All IC engines that power individual well pumps are permitted under PTO 8036-R11.

4.3 Fugitive Hydrocarbon Sources

Emissions of reactive organic compounds from piping components (e.g., valves and connections), pumps, compressors and pressure relief devices have been quantified using the following two methodologies:

- (1) The CARB/KVB Method, (P&P 6100.060.1996 (*Determination of Fugitive Hydrocarbon Emissions at Oil and Gas Facilities by the CARB/KVB Method Modified for Revised ROC Definition*) used for older components at the facility.
- (2) The component leak path method P&P 6100.061 (*Determination of Fugitive Hydrocarbon Emissions at Oil and Gas Facilities Through the Use of Facility Component Counts*), is used for newer components installed at this facility.

Emission calculations associated with P&P 6100.060.1996 and P&P 6100.061 are provided in Attachment 10.2. An emission control efficiency of 80-percent is credited to all components due to the implementation of a District-approved I&M program for leak detection and repair consistent with Rule 331 requirements. Ongoing compliance is determined in the field by inspection with an organic vapor analyzer and verification of operator records. Permitted fugitive ROC emissions from fugitive components reflect the elimination of ethane from the list of ROCs.

4.4 Tanks/Vessels/Sumps/Separators

- 4.4.1 <u>Oil-Water Separation and Crude Oil Storage Tanks</u>: The Newlove Lease non-thermal operations utilize three 3,000 bbl wash tanks for oil-water separation, and one 1,000 bbl crude storage tank. All are vertical, cone roof tanks. The wash tanks measure 29.7 feet diameter by 24 feet high. The 1000 bbl crude tank measures 21.5 feet diameter by 16 feet high. All four tanks are connected to vapor recovery.
- 4.4.2 <u>Pits, Sumps and Well Cellars</u>: The Newlove Lease is equipped with forty well cellars, six wastewater pits, two truck wash pits and two sand bins. An out of service 1,600 bbl emergency overflow tank is located at Newlove East. The emergency overflow tank measures 21.5 feet in diameter by 24 feet high and is not equipped with vapor recovery. Well cellar emissions are reduced 70-percent for maintaining the cellars per the requirements of Rule 344. Fugitive emissions from all other pits and sumps are uncontrolled. These emission estimates are based District P&P 6100.060 (*Determination of Fugitive Hydrocarbon Emissions at Oil and Gas Facilities by the CARB/KVB Method Modified for Revised ROC Definition*). The calculation is:

 $ER = [(EF \ x \ SAREA \ \div \ 24) \ x \ (1 - \ CE) \ x \ (HPP)]$

where:

E = emission rate (lb/period) EF = ROC emission factor (lb/ft²-day) SAREA = unit surface area (ft²) CE = control efficiency HPP = operating hours per time period (hrs/period)

Attachment 10.2 contains an emission spreadsheet showing the detailed calculations for all well cellars, pits and sumps.

4.4.3 <u>Waste Water Tanks</u>: A 10,000 bbl capacity wastewater tank measures 55 feet in diameter and 24 feet high and a 1,000 bbl capacity wastewater tank that measures 21.5 feet in diameter and 16 feet high serve the non-thermal side of the facility. The tanks are connected to vapor recovery. Emissions from the tank is calculated using the same methodology as pits and sumps, and is based on District's P&P 6100.060 (*Calculation of Fugitive Hydrocarbon Emissions at Oil and Gas Facilities by the CARB/KVB Method - Modified for the Revised ROC Definition*). Attachment 10.2 contains an emission spreadsheet showing the detailed calculations for the tanks.

4.5 Other Emission Sources

- 4.5.1 <u>General Solvent Cleaning/Degreasing</u>: Solvent usage (not used as thinners for surface coating) may occur at the facility as part of normal daily operations. The usage includes cold solvent degreasing. Mass balance emission calculations are used assuming all the solvent used evaporates to the atmosphere.
- 4.5.2 <u>Surface Coating</u>: Surface coating operations typically include normal touch up activities. Entire facility painting programs may also be performed. Emissions are determined based on mass balance calculations assuming all solvents evaporate into the atmosphere. Emissions of PM/PM₁₀/PM_{2.5} from paint overspray are not calculated due to the lack of established calculation techniques.
- 4.5.3 <u>Abrasive Blasting</u>: Abrasive blasting with CARB certified sands may be performed as a preparation step prior to surface coating. The engines used to power the compressor may be

electric or diesel fired. If diesel fired, permits will be required unless the engine is registered with CARB. Particulate matter is emitted during this process. A general emission factor of 0.01 pound PM per pound of abrasive is used (SCAQMD - Permit Processing Manual, 1989) to estimate emissions of PM, PM₁₀, and PM_{2.5} when needed for compliance verifications. A PM, PM/PM₁₀/PM_{2.5} ratio of 1.0 is assumed.

4.6 Vapor Recovery/Control Systems

The vapor recovery system collects ROC emissions from the tanks and the crude oil loading rack. The collected vapors are combined with gas from the gas gathering system and are piped to the Orcutt Hill Compressor Plant or to the Diatomite Project steam generators. Overall ROC control efficiency for the system is assumed to be 95 percent.

4.7 BACT/NSPS/NESHAP/MACT

BACT is not triggered for the non-thermal facility equipment. To date, this facility has not triggered National Emission Standards for Hazardous Air Pollutants (NESHAP) or Maximum Available Control Technology (MACT).

4.8 CEMS/Process Monitoring/CAM

- 4.8.1 <u>CEMS</u>: There are no CEMS at this facility.
- 4.8.2 <u>Process Monitoring</u>: In many instances, ongoing compliance beyond a single (snap shot) source test is assessed by the use of process monitoring systems. Examples of these monitors include: the volume of gas burned in the steam generators, engine hour meters, fuel usage meters, water injection mass flow meters, flare gas flow meters and hydrogen sulfide analyzers. Once these process monitors are in place, it is important that they be well maintained and calibrated to ensure that the required accuracy and precision of the devices are within specifications. The permittee is required to report oil throughput, however this permit requires no specific monitors.
- 4.8.3 <u>CAM</u>: The Pacific Coast Energy Company Orcutt Hill Stationary Source is a major source that is subject to the USEPA's Compliance Assurance Monitoring (CAM) rule (40 CFR 64). Any emissions unit at the facility with uncontrolled emissions potential exceeding major source emission thresholds (100 tpy) for any pollutant is subject to CAM provisions. It was determined that CAM was not applicable to any equipment units at this facility.

4.9 Source Testing/Sampling

Source testing and sampling are required in order to ensure compliance with permitted emission limits, prohibitory rules, control measures and the assumptions that form the basis for issuing operating permits. The non-thermal facility equipment does not require source testing.

At a minimum, the process streams below are required to be sampled and analyzed on a periodic basis, per District Rules and standards:

 \rightarrow <u>Produced oil</u>: Annual analysis for API gravity and true vapor pressure.

All sampling and analyses are required to be performed according to District approved procedures and methodologies. Typically, the appropriate ASTM methods are acceptable. For liquids with API gravity over 20, ASTM D323 applies for true vapor pressure (TVP) measurement. In this case, the TVP at the maximum expected temperature shall be calculated from the Reid vapor pressure in accordance with API Bulletin 2518, or equivalent Reid/true vapor pressure correlation. The calculated true vapor pressure is based on the maximum expected

operating temperature in the initial crude oil storage tank. TVP sampling methods for liquids with an API gravity under 20^o require specialized procedures per Rule 325.G.2.b. It is important that all sampling and analysis be traceable by chain of custody procedures.

4.10 Part 70 Engineering Review: Hazardous Air Pollutant Emissions

Total emissions of hazardous air pollutants (HAP) are computed for each emissions unit. The HAP emission factors and references are listed in Table 5.4-1. Potential HAP emissions from the facility, based on the worst-case operational scenario, are computed and listed in Table 5.4-2. The stationary source HAP emission totals are summarized in Table 5.4-3. HAP emissions have been included in the Part 70 permit solely for the purpose of any future MACT applicability determination. They do not constitute any emissions or operations limit.

5.0 Emissions

5.1 General

The facility was analyzed to determine all air-related emission sources. Emissions calculations are divided into "permitted" and "exempt" categories. District Rule 202 determines permit exempt equipment. The permitted emissions for each emissions unit is based on the equipment's potential-to-emit (as defined by Rule 102).

Section 5.2 details the permitted emissions for each emissions unit. Section 5.3 details the overall permitted emissions for the facility, as well as the federal potential to emit emissions, based on reasonable worst-case scenarios using the potential-to-emit for each emissions unit. Section 5.4 provides the estimated HAP emissions from the facility. Section 5.5 provides the estimated emissions from permit exempt equipment and also serves as the Part 70 list of insignificant emissions.

5.2 Permitted Emission Limits - Emission Units

Each emissions unit associated with the facility was analyzed to determine the potential-to-emit for the following pollutants:

- \Rightarrow Nitrogen Oxides (NO_x)³
- \Rightarrow Reactive Organic Compounds (ROC)
- \Rightarrow Carbon Monoxide (CO)
- \Rightarrow Sulfur Oxides (SO_x)⁴
- \Rightarrow Particulate Matter (PM) ⁵
- \Rightarrow Particulate Matter smaller than 10 microns (PM₁₀)
- \Rightarrow Particulate Matter smaller than 2.5 microns (PM_{2.5})
- \Rightarrow Greenhouse Gases (GHG)

Permitted emissions are calculated for both short term (daily) and long term (annual) time periods. Section 4.0 (Engineering Analysis) provides a general discussion of the basic calculation

³ Calculated and reported as nitrogen dioxide (NO₂)

⁴ Calculated and reported as sulfur dioxide (SO₂)

 $^{^5\,}$ Calculated and reported as all particulate matter smaller than 100 μm

methodologies and emission factors used. The reference documentation for the specific emission calculations, as well as detailed calculation spreadsheets, may be found in Section 4 and Attachments 10.1 and 10.2 respectively. Table 5.1-1 provides the basic operating characteristics. Table 5.1-2 provides the specific emission factors. Tables 5.1-3 and 5.1-4 show the permitted short-term and permitted long-term emissions for each unit or operation. In the table, the last column indicates whether the emission limits are federally-enforceable. Those emission limits that are federally-enforceable are indicated by the symbol "FE". Those emission limits that are District-only enforceable are indicated by the symbol "A".

5.3 Permitted Emission Limits - Facility and Federal Potential to Emit Totals

The total potential-to-emit for all emission units associated with this facility were analyzed. This analysis looked at the reasonable worst-case operating scenarios for each operating period. The equipment operating in each of the scenarios are presented below. Unless otherwise specified, the operating characteristics defined in Table 5.1-1 for each emission unit are assumed. Table 5.2 shows the total permitted emissions for the Newlove Lease non-thermal operations. Table 5.3 shows the federal potential to emit from the Newlove Lease non-thermal operations. Table 5.4 slows the total permitted emissions for the entire Newlove Lease (non-thermal operations plus the Diatomite Project). This permit renewal reflects the increase in emissions due to the incorporation of PTO 15506. Additionally, Non-Diatomite fugitive hydrocarbon emissions in Table 5.1-1 were incorrectly reproduced in Table 5.4 of PTO 8240-R10. This correction has been made in this permit renewal.

5.4 Part 70: Hazardous Air Pollutant Emissions for the Facility

Hazardous air pollutants (HAP) emission factors, for each type of emissions unit, are listed in Table 5.5-1. Potential HAP emissions, based on the worst-case scenario, are shown in Table 5.5-2. HAP emission totals have been revised since issuance of the previous permit renewal based on revised HAPs emission factors.

5.5 Exempt Emission Sources/Part 70 Insignificant Emissions

Equipment/activities exempt pursuant to District Rule 202 include maintenance operations involving surface coating. In addition, *insignificant activities* such as maintenance operations using paints and coatings, contribute to the facility emissions. The family trap is considered exempt and the emissions appear in the de minimis table.

			Dev	ice Specific	ations		Us	sage Data		Maximum Operating Schedule				
Equipment Category	Description	Dev No	Feed	TVP	Size	Units C	apacity	Units	Load	hr	day	qtr	year	
Tanks	Wash Tank	394720	O/W	3.200	3,000	bbls	3,000	bbl/day	1.0	1.0	24	2,190	8,760	
	Wash Tank	109949	O/W	2.420	3,000	bbls	3,000	bbl/day	1.0	1.0	24	2,190	8,760	
	Wash Tank	388303	O/W	2.420	3,000	bbls	3,000	bbl/day	1.0	1.0	24	2,190	8,760	
	Crude Tank	002974	Oil	2.420	1,000	bbls	3,000	bbl/day	1.0	1.0	24	2,190	8,760	
	Wastewater Tank	110332	Water	2.420	1,000	bbls			1.0	1.0	24	2,190	8,760	
	Wastewater Tank	107475	Water	2.420	10,000	bbls			1.0	1.0	24	2,190	8,760	
				Service										
Pits and Sumps	Well Cellars	003041	O/W	Primary	1,440	ft ²			1.0	1.0	24	2,190	8,760	
	Waste Water Pits	See Equip. List	O/W	Secondary	75	ft ²			1.0	1.0	24	2,190	8,760	
	Spill Catch Pan	101177	O/W	Primary	5	ft ²			1.0	1.0	24	2,190	8,760	
	Truck Washout Pit	113871	O/W	Tertiary	420	ft2			1.0	1.0	24	2,190	8,760	
	Truck Washout Pit	113871	O/W	Tertiary	420	ft2			1.0	1.0	24	2,190	8,760	
Loading Rack	Loading Rack	113485	Oil						1.0	1.0	24	2,190	8,760	
Fugitive Components (a)	Valves, Connections, etc	002980			78	wells			1.0	1.0	24	2,190	8,760	
	Pumps/Compressors/Wellheads	003042			78	wells			1.0	1.0	24	2,190	8,760	
Fugitive Components (b)	Valves (gas)	112500		Gas	418	clps			1.0	1.0	24	2,190	8,760	
	Flanges/Connections (gas)	112501		Gas	2,775	clps			1.0	1.0	24	2,190	8,760	
	Pressure Safety Valves (gas)	113146		Gas	1 (clps			1.0	1.0	24	2,190	8,760	
	Valves (oil)	112812		Oil	389	clps			1.0	1.0	24	2,190	8,760	
	Flanges/Connections (oil)	112813		Oil	2,293	clps			1.0	1.0	24	2,190	8,760	
	Pump Seals (oil)	112814		Oil	44 (clps			1.0	1.0	24	2,190	8,760	
	Fugitve Components (PTO 14019)	386204		Gas	69	clps			1.0	1.0	24	2,190	8,760	
	Fugitve Components (PTO 15506)	394721		Gas/Oil	57	clps			1.0	1.0	24	2,190	8,761	

Table 5.1-1 Pacific Coast Newlove Lease (non-thermal): Permit to Operate 8240-R12 Operating Equipment Description

Notes:

(a) CARB-KVB Method

(b) Component Leak Path Method

			Emission Factors								
Equipment Category	Description	Dev No	NO _x	ROC	со	SOx	PM	PM _{2.5/10}	Units		
Tanks	Wash Tank	394720									
	Wash Tank	109949	5	See attache	d worksh	neets for en	nission fact	ors.			
	Wash Tank	388303									
	Crude Tank	002974									
	Wastewater Tank	110332		0.0006					lb/ft ² -day		
	Wastewater Tank	107475		0.0006					lb/ft ² -day		
Pits and Sumps	Well Cellars	003041		0.0282					lb/ft ² -day		
	Pits	See Equip. List		0.0126					lb/ft ² -day		
	Spill Catch Pan	101177		0.0941					lb/ft ² -day		
	Truck Washout Pit	113871		0.0058					lb/ft ² -day		
	Truck Washout Pit	113871		0.0058					lb/ft ² -day		
Fugitive Components	Valves, Connections, etc	002980									
	Pumps/Compressors/Wellheads	003042									
Fugitive Components (b)	Valves	112500		0.0183					lbs/clp/day		
	Flanges/Connections	112501		0.0043					lbs/clp/da		
	Pressure Safety Valves	113146		0.4135					lbs/clp/da		
	Valves	112812		0.0005					lbs/clp/da		
	Flanges/Connections	112813		0.0002					lbs/clp/da		
	Pump Seals	112814		0.0004					lbs/clp/da		
	Fugitive Components (ATC 14019)	386204	See a	ttached wo	rksheet F	for emissi	on factors		lbs/clp/da		
	Fugitive Components (ATC 15506)	394721	See a	ttached wo	rksheet E	E for emissi	on factors		lbs/clp/da		

Table 5.1-2Pacific Coast Newlove Lease (non-thermal): Permit to Operate 8240-R12Equipment Emission Factors

			N	IO _x	R	ос	C	:0	S	o _x	F	M	PM	2.5/10	Enforceability
Equipment Category	Description	Dev No	lb/hr	lb/day	lb/hr	lb/day	lb/hr	lb/day	lb/hr	lb/day	lb/hr	lb/day	lb/hr	lb/day	Туре
Tanks	Wash Tank	394720			0.00	0.04									FE
	Wash Tank	109949			0.00	0.04									FE
	Wash Tank	388303			0.00	0.04									FE
	Crude Tank	002974			0.05	1.12									FE
	Wastewater Tank	110332			0.01	0.23									FE
	Wastewater Tank	107475			0.06	1.50									FE
Pits and Sumps	Well Cellars	003041			1.69	40.65									A
	Pits	See Equip. List			0.04	0.94									Α
	Spill Catch Pan	101177			0.02	0.50									
	Truck Washout Pit	113871			0.10	2.44									
	Truck Washout Pit	113871			0.10	2.44									
Fugitive Components	Valves, Connections, etc	002980			2.74	65.65									A
	Pumps/Compressors/Wellheads	003042			0.05	1.27									А
Fugitive Components	Valves	112500			0.32	7.65									FE
	Flanges/Connections	112501			0.50	12.04									FE
	Pressure Safety Valves	113146			0.02	0.41									FE
	Valves	112812			0.01	0.18									FE
	Flanges/Connections	112813			0.02	0.51									FE
	Pump Seals	112814			0.00	0.02									FE
	Fugitive Components (ATC 14019)	386204			0.02	0.50									FE
	Fugitive Components (ATC 15506)	394721			0.03	0.61									FE

Table 5.1-3 Pacific Coast Newlove Lease (non-thermal): Permit to Operate 8240-R12 Hourly and Daily Emissions

Notes:

A = APCD enforceable emission limit.

FE = Federally enforceable emission limit.

			N	Dx	R	oc	С	0	S	Ox	Р	М	PM	2.5/10	Enforceability
Equipment Category	Description	Dev No	TPQ	TPY	TPQ	TPY	TPQ	TPY	TPQ	TPY	TPQ	TPY	TPQ	TPY	Туре
Tanks	Wash Tank	394720			0.00	0.01									FE
	Wash Tank	109949			0.00	0.01									FE
	Wash Tank	388303			0.00	0.01									FE
	Crude Tank	002974			0.05	0.20									FE
	Wastewater Tank	110332			0.01	0.04									FE
	Wastewater Tank	107475			0.07	0.27									FE
Pits and Sumps	Well Cellars	003041			1.86	7.42									А
	Pits	See Equip. List			0.04	0.17									А
	Spill Catch Pan	101177			0.02	0.09									А
	Truck Washout Pit	113871			0.11	0.44									А
	Truck Washout Pit	113871			0.11	0.44									А
Fugitive Components	Valves, Connections, etc	002980			3.00	11.98									А
	Pumps/Compressors/Wellheads	003042			0.06	0.23									А
Fugitive Components	Valves	112500			0.35	1.40									FE
	Flanges/Connections	112501			0.55	2.20									FE
	Pressure Safety Valves	113146			0.02	0.08									FE
	Valves	112812			0.01	0.03									FE
	Flanges/Connections	112813			0.02	0.09									FE
	Pump Seals	112814			0.00	0.00									FE
	Fugitive Components (ATC 14019)	386204			0.02	0.09									FE
	Fugitive Components (ATC 15506)	394721			0.03	0.11									FE

Table 5.1-4 Pacific Coast Newlove Lease (non-thermal): Permit to Operate 8240-R12 Quarterly and Annual Emissions

Notes:

A = APCD enforceable emission limit.

FE = Federally enforceable emission limit.

Table 5.2 Pacific Coast Newlove Lease (non-thermal): Permit to Operate 8240-R12 Newlove Lease Non-Diatomite Permitted Facility Emissions

A. HOURLY (lb/hr)

Equipment Category	NO _x	ROC	СО	SOx	PM	PM _{2.5/10}
Non-Diatomite						
Tanks		0.12				
Pits and Sumps		1.95				
Fugitive Components		3.71				
	0.00	5.79	0.00	0.00	0.00	0.00

B. DAILY (Ib/day)

Equipment Category	NO _x	ROC	СО	SOx	РМ	PM _{2.5/10}
Non-Diatomite						
Tanks		2.97				
Pits and Sumps		46.97				
Fugitive Components		88.84				
	0.00	138.79	0.00	0.00	0.00	0.00

C. QUARTERLY (tpq)

Equipment Category	NO _x	ROC	СО	SOx	PM	PM _{2.5/10}
Non-Diatomite						
Tanks		0.14				
Pits and Sumps		2.14				
Fugitive Components		4.06				
	0.00	6.33	0.00	0.00	0.00	0.00

D. ANNUAL (tpy)

Equipment Category	NO _x	ROC	CO	SOx	PM	PM _{2.5/10}
Non-Diatomite						
Tanks		0.54				
Pits and Sumps		8.56				
Fugitive Components		16.21				
	0.00	25.32	0.00	0.00	0.00	0.00

Table 5.3Pacific Coast Newlove Lease (non-thermal): Permit to Operate 8240-R12Federal Potential To Emit

A. HOURLY (lb/hr)

Equipment Category	NOx	ROC	СО	SOx	РМ	PM _{2.5/10}
Tanks		0.12				
Pits and Sumps		1.95				
Exempt Surface Coating		0.01				
	0.00	2.08	0.00	0.00	0.00	0.00

B. DAILY (lb/day)

Equipment Category	NOx	ROC	СО	SOx	PM	PM _{2.5/10}
Tanks		2.97				
Pits and Sumps		46.97				
Exempt Surface Coating		0.01				
	0.00	49.95	0.00	0.00	0.00	0.00

C. QUARTERLY (tpq)

Equipment Category	NOx	ROC	СО	SOx	PM	PM _{2.5/10}
Tanks		0.14				
Pits and Sumps		2.14				
Exempt Surface Coating		0.01				
	0.00	2.29	0.00	0.00	0.00	0.00

D. ANNUAL (tpy)

Equipment Category	NOx	ROC	СО	SOx	PM	PM _{2.5/10}
Tanks		0.54				
Pits and Sumps		8.56				
Exempt Surface Coating		0.01				
	0.00	9.11	0.00	0.00	0.00	0.00

Table 5.4 Pacific Coast Newlove Lease (Diatomite + non-thermal): Permit to Operate 8240-R12 Total Newlove Lease Facility Potential To Emit

A. HOURLY (lb/hr)

Equipment Category	NOx	ROC	со	SOx	PM	PM _{2.5/10}	GHG
Non-Diatomite							
Tanks		0.12					
Pits and Sumps		1.95					
Exempt Surface Coating		0.01					
Fugitive Hydrocarbons		3.71					
Diatomite							
Stream Generator	1.91	0.74	3.56	0.69	1.13	1.13	21,937.50
Tanks		0.05					
Fugitive Components		1.52					
	1.91	8.10	3.56	0.69	1.13	1.13	21937.50

B. DAILY (Ib/day)

Equipment Category	NOx	ROC	со	SOx	PM	PM _{2.5/10}	GHG
Non-Diatomite							
Tanks		2.97					
Pits and Sumps		46.97					
Exempt Surface Coating		0.01					
Fugitive Hydrocarbons		88.84					
Diatomite							
Stream Generator	45.81	17.78	85.50	16.66	27.00	27.00	526,500.00
Tanks		1.32					
Fugitive Components		36.53					
	45.81	194.42	85.50	16.66	27.00	27.00	526,500.00

C. QUARTERLY (tpq)

Equipment Category	NOx	ROC	со	SOx	PM	PM _{2.5/10}	GHG
Non-Diatomite							
Tanks		0.14					
Pits and Sumps		2.14					
Exempt Surface Coating		0.01					
Fugitive Hydrocarbons		4.06					
Diatomite							
Stream Generator	2.09	0.81	3.90	0.76	1.23	1.23	24,021.56
Tanks		0.08					
Fugitive Components		1.46					
	2.09	8.69	3.90	0.76	1.23	1.23	24,021.56

D. ANNUAL (tpy)

Equipment Category	NOx	ROC	со	SOx	PM	PM _{2.5/10}	GHG
Non-Diatomite							
Tanks		0.54					
Pits and Sumps		8.56					
Exempt Surface Coating		0.01					
Fugitive Hydrocarbons		16.21					
Diatomite							
Stream Generator	8.36	3.24	15.60	3.04	4.93	4.93	96,086.25
Tanks		0.34					
Fugitive Components		4.30					
	8.36	33.20	15.60	3.04	4.93	4.93	96.086.25

					Emission I	actors		
Equipment Category	Description	Dev No	Hexane	Benzene	Toluene	Xylene	Iso-Octane	Units
Tanks	Wash Tank ¹	394720	0.0531	0.0271	0.0158		0.0045	lb/lb-ROC
Tanks	Wash Tank ¹	109949	0.0531	0.0271	0.0158		0.0045	lb/lb-ROC
	Wash Tank ¹	388303	0.0531	0.0271	0.0158		0.0045	lb/lb-ROC
	Crude Tank	002974	0.0531	0.0271	0.0158		0.0045	lb/lb-ROC
	Wastewater Tank ²	110332	0.0528	0.0271	0.0165		0.0045	lb/lb-ROC
	Wastewater Tank ²	107475	0.0528	0.0264	0.0165		0.0050	lb/lb-ROC
Pits and Sumps ²	Well Cellars	003041	0.0528	0.0264	0.0165		0.0050	lb/lb-ROC
	Pits	See Equip. List		0.0264	0.0165		0.0050	lb/lb-ROC
	Spill Catch Pan	101177	0.0528	0.0264	0.0165		0.0050	lb/lb-ROC
	Truck Washout Pit	113871	0.0528	0.0264	0.0165		0.0050	lb/lb-ROC
	Truck Washout Pit	113871	0.0528	0.0264	0.0165		0.0050	lb/lb-ROC
Loading Rack ³	Loading Rack	113485	0.1119	0.0011			0.1554	lb/lb-ROC
Fugitive Components	Valves, Connections, etc ⁴	002980	0.2532	0.0026			0.1494	lb/lb-ROC
	Pumps/Compressors/Wellheads ⁵	003042	0.3779	0.0038			0.1554	lb/lb-ROC
Fugitive Components ⁶	Valves	112500	0.1677	0.0032			0.1494	lb/lb-ROC
	Flanges/Connections	112501	0.1677	0.0032			0.1494	lb/lb-ROC
	Pressure Safety Valves	113146	0.1677	0.0032			0.1494	lb/lb-ROC
	Valves	112812	0.1677	0.0032			0.1554	lb/lb-ROC
	Flanges/Connections	112813	0.1677	0.0032			0.1554	lb/lb-ROC
	Pump Seals	112814	0.1677	0.0032			0.1554	lb/lb-ROC
	Fugitve Components (PTO 14019	386204	0.1677	0.0032			0.1494	lb/lb-ROC
	Fugitve Components (PTO 15506	394721	0.1677	0.0032			0.1494	lb/lb-ROC
Exempt Solvent Usage ⁷	Cleaning/degreasing (estd.)			0.0500	0.0500	0.0500		lb/lb-ROC

Table 5.5-1 Pacific Coast Newlove Lease (non-thermal): Permit to Operate 8240-R12 Equipment Hazardous Air Pollutant Factors

References:

¹ The emission factors, originally in units of lb/lb-TOC, were converted to lb/lb-ROC using an ROC/TOC fraction of 0.606 from Table 3.2.3 of the District's P&P 6100.060. ² The emission factors, originally in units of lb/lb-TOC, were converted to lb/lb-ROC using an ROC/TOC fraction of 0.606 from Table 3.2.3 of the District's P&P 6100.060. ³The emission factor, originally in units of lb/lb-TOC, was converted to lb/lb-ROC using the District's default ROC/TOC fraction of 0.885 for crude oil.

⁴ The emission factors, originally in units of lb/lb-TOC, were converted to lb/lb-ROC using an ROC/TOC fraction of 0.391 from Table 3.2.3 of the District's P&P 6100.060. ⁵ The emission factors, originally in units of lb/lb-TOC, were converted to lb/lb-ROC using an ROC/TOC fraction of 0.262 from Table 3.2.3 of the District's P&P 6100.060.

The ROC/TOC ratio for Compressors is the most conservative therefore it was used.

⁷ Solvents assumed to contain 5% benzene, 5% toluene, 5% xylene.

			Hexane	Benzene	Toluene	Xylene	Iso-Octane
Equipment Category	Description	Dev No	ton/year	ton/year	ton/year	ton/year	ton/year
Tanks	Wash Tank	394720	3 88E-04	1.98E-04	1.15E-04		3.30E-05
i unito	Wash Tank	109949		1.98E-04	1.15E-04		3.30E-05
	Wash Tank	388303		1.98E-04	1.15E-04		3.30E-05
	Crude Tank	002974		5.54E-03	3.23E-03		9.24E-04
	Wastewater Tank	110332		1.11E-03	6.93E-04		2.08E-04
	Wastewater Tank	107475		7.23E-03	4.52E-03		1.36E-03
Pits and Sumps	Well Cellars	003041	2.84E-01	1.42E-01	8.88E-02		2.66E-02
,	Pits	See Equip. List	9.06E-03	4.53E-03	2.83E-03		8.49E-04
	Spill Catch Pan	101177	4.84E-03	2.42E-03	1.51E-03		4.53E-04
	Truck Washout Pit	113871	2.32E-02	1.16E-02	7.26E-03		2.18E-03
	Truck Washout Pit	113871	2.32E-02	1.16E-02	7.26E-03		2.18E-03
Loading Rack	Loading Rack	113485	1.90E-02	1.92E-04			1.67E-02
Fugitive Components (a)	Valves, Connections, etc	002980	2.02E+00	3.89E-02			1.79E+00
	Pumps/Compressors/Wellheads	003042	4.10E-02	4.14E-04			3.60E-02
Fugitive Components (b)	Valves	112500	2.27E-01	4.37E-03			2.01E-01
	Flanges/Connections	112501	3.64E-01	7.01E-03			3.22E-01
	Pressure Safety Valves	113146	1.27E-02	2.45E-04			1.13E-02
	Valves	112812	5.76E-03	5.82E-05			5.06E-03
	Flanges/Connections	112813	1.66E-02	1.67E-04			1.46E-02
	Pump Seals	112814	6.20E-04	6.26E-06			5.45E-04
	Fugitve Components (PTO 14019)	386204	1.54E-02	2.96E-04			1.36E-02
	Fugitve Components (PTO 15506)	394721	1.14E-02	1.76E-04			1.36E-02
Exempt Solvent Usage	Cleaning/degreasing (estd.)			5.00E-04	5.00E-04	5.00E-04	
	Т	otal HAPs (TPY):	3.11	0.24	0.12	5.00E-04	2.46

Table 5.5-2 Pacific Coast Newlove Lease (non-thermal): Permit to Operate 8240-R12 Annual Hazardous Air Pollution Emissions (TPY)

Notes:
 These are estimates only, and are not intended to represent emission limits.
 Based on CAAA, Section 112 (n) (4) stipulations, the HAP emissions listed above can not be aggregated at the source for any purpose, including determination of HAP major source status for MACT applicability.

6.0 Air Quality Impact Analyses

6.1 Modeling

Air quality modeling has not been required for this stationary source.

6.2 Increments

An air quality increment analysis has not been required for this stationary source.

6.3 Monitoring

Air quality monitoring is not required for this stationary source.

6.4 Health Risk Assessment

The Pacific Coast Energy Company - Orcutt Hill Stationary Source is subject to the Air Toxics "Hot Spots" Program (AB 2588). A health risk assessment (HRA) for the Orcutt Hill facilities was prepared by the District on September 28, 1993 under the requirements of the AB 2588 program. The HRA is based on 1991 toxic emissions inventory data submitted to the District by Luft Environmental Consulting on behalf of the Unocal Corporation, the previous owners of the Orcutt Hill stationary source.

Based on the 1991 toxic emissions inventory, a cancer risk of about 5 per million at the property boundary was estimated for the stationary source. This risk is primarily due to benzene emitted from storage tanks at the site. Additionally, chronic and acute noncarcinogenic risks of 0.3 and 0.2 have been estimated by the District and are mainly due to acrolein emissions from internal combustion engines. Approximately 3,663 pounds of benzene and about 317 pounds of acrolein were emitted from the entire stationary source in 1991. The cancer and noncancer risk projections are less than the District's AB 2588 significance thresholds of 10 in a million and 1.0, respectively.

A second health risk assessment (HRA), based on the 2005 toxics emissions inventory, was prepared for the Orcutt Hill facilities in conjunction with the Diatomite Project permit process located on the Newlove Lease. This HRA was revised in January 2009, to reflect the current status of electrification of injection pump engines and engine locations. The results of this HRA are provided below:

Pathway	Health Impact Type	HARP Receptor Number	HARP Receptor Type	UTM Easting (NAD83, m)	UTM Northing (NAD83, m)	Heath Risk	Significant Risk Level
Inhalation	Cancer	12024	Boundary	735210	3858241	8.73	≥10
Only	Chronic	12024	Boundary	735210	3858241	0.0175	≥ 1
	Acute	11936	Boundary	735998	3859372	0.823	≥ 1
Multi	Cancer	12024	Boundary	735210	3858241	9.80	≥10
Pathway	Chronic	12024	Boundary	735210	3858241	0.0175	≥ 1
	Acute	11936	Boundary	735998	3859372	0.823	≥ 1

7.0 CAP Consistency, Offset Requirements and ERCs

7.1 General

Santa Barbara County has not attained the state PM_{10} air quality standards. Therefore, emissions from all emission units at the stationary source and its constituent facilities must be consistent with the provisions of the USEPA and State approved Clean Air Plans (CAP) and must not interfere with progress toward attainment of federal and state ambient air quality standards. Under District regulations, any modifications at the source that result in an emission increase of any nonattainment pollutant exceeding 25 lbs/day must apply BACT (NAR). Increases above offset thresholds will trigger offsets at the source or elsewhere so that there is a net air quality benefit for Santa Barbara County. These offset threshold levels are 240 lbs/day for all attainment pollutants and precursors (except carbon monoxide and PM_{2.5}) and 25 tons/year for all nonattainment pollutants and precursors (except carbon monoxide and PM_{2.5}).

On July 1, 2020, Santa Barbara County achieved attainment for the State ozone standards. This change was initiated by the California Air Resources Board (CARB) at their December 2019 public hearing and it was later approved by the Office of Administrative Law.

7.2 Clean Air Plan

The 2007 Clean Air Plan, adopted by the District Board on August 16, 2007, addressed both federal and state requirements, serving as the maintenance plan for the federal eight-hour ozone standard and as the state triennial update required by the Health and Safety Code to demonstrate how the District will expedite attainment of the state eight-hour ozone standard. The plan was developed for Santa Barbara County as required by both the 1998 California Clean Air Act and the 1990 Federal Clean Air Act Amendments.

In December 2022 the District Board adopted the 2022 Ozone Plan which satisfies all state triennial planning requirements.

7.3 Offset Requirements

The Pacific Coast Energy Company - Orcutt Hill and Casmalia Oil Fields Stationary triggers emission offsets for NOx and ROCs. Tables 7.3(a) and 7.3(b) summarize the emissions and offset totals for this stationary source.

Table 7.3(a) - Offset Liability Table for PCEC Orcutt Hill Source Updated: January 30, 2024

						Offset	Liability		
				ERC		tons/	year	ERC	
Item	Permit	Facility	Issue Date	Returned?	Project	NO _X	ROC	Source	Notes
1	Prior Offset Liabilities	Various	pre-8/2016	n/a	See Archive Offset Tables	11.357	18.348	Various	(a)
2	ATC 14921	Pinal Lease	03/09/17	No	Wash Tank Replacement	0.000	0.440	ERC 301	(b)
3	ATC/PTO 15256	Orcutt Hill Field (MVFF)	11/30/18	No	MVFF Throughput Increase	0.000	0.013	ERC 462	
4	ATC 15506	Newlove Lease	07/30/20	No	Wash Tank Replacement	0.000	0.270	ERC 507	
5	ATC 15980	Cal Coast Lease (Orcutt Hill)	04/27/23	No	Wash Tank Replacement	0.000	0.090	ERC 565	(b)
6	ATC 16040	Pinal Lease	07/12/23	No	Produced Water Tank Replacement	0.000	0.196	ERC 548	(b)
7	ATC 16121	Newlove Lease	TBD	No	Wash Tank Replacement	0.000	0.128	ERC 640	(b)

TOTALS (tpy) = 11.357 19.485

Notes (a)

Pre-August 26, 2016 offset liabilities are summarized in Items (1). See facility Archive Offset Tables for details.

(b)

NOx for ROC Interpollutant trade. See Table 1(b) for ERCs required to mitigate the offset liability. ERC Source denotes the ERC Certificate # used by the ATC permit. (c)

(d) Permits with zero emission increases not shown in this table

NithCapodi orgishanesiGroupstENGRWHQ08Gas/Major SourcestSSID 02867 Paorito Coast Energy Droutt HilDItisets/Post 2016 NSR Rule Change PCEC Drout HilDItiset-ERC Table - (04-03-23). Hist[Table 1(a) - Olisets

Table 7.3(b) - Emission Reduction Credits Table for PCEC Orcutt Hill Source Updated: January 30, 2024

					Emission Red	uction Credits			
			Surrender	ERC	tons/	year	Offset	ERC	
Item	Permit	Facility	Date	Returned?	NOx	ROC	Ratio	Source	NOTES
1	Prior Offset Liabilities	Various	pre-8/2016	n/a	13.628	22.017	varied	Various	(a)(b)
2	ATC 14921	Pinal Lease	03/09/17	No	0.000	0.484	1.1	ERC 301	(a)(b)(c)
3	ATC/PTO 15256	Orcutt Hill Field (MVFF)	11/30/18	No	0.000	0.014	1.1	ERC 462	(a)(b)
4	ATC 15506	Newlove Lease	07/30/20	No	0.000	0.297	1.1	ERC 507	(a)(b)
5	ATC 15980	Cal Coast Lease (Orcutt Hill)	04/27/23	No	0.000	0.099	1.1	ERC 565	(a)(b)(c)
6	ATC 16040	Pinal Lease	01/17/23	No	0.000	0.215	1.1	ERC 548	(a)(b)(c)
7	ATC 16121	Newlove Lease	TBD	No	0.000	0.141	1.1	ERC 640	(a)(b)
			TO	TALS (tpy) =	13.628	23.268]	

Notes

Items 1 reflects all NSR ERCs used for the PCEC Orcutt Hill stationary source facilities prior to August 26, 2016. (a)

See the August 26, 2016 Archive Offset Tables for details.

(b) Brown text cells require data entry. Do not enter data in Black text cells

(c) NOx for ROC interpollutant trade.

Visbcapod orgishares/Groups/ENGR/WP/OR/GastMajor Sources/SSID 02667 Pacific Coast Energy Orout HII/Offsets/Porz 2016 NSR Pule Change PCEC Orout HII Offset-ERC Table - (04-03-23). doi:17able 1b) - ERCs

7.4 Emission Reduction Credits

The Newlove Lease provides 30.86 tons of ROC per quarter and 1.33 tons of NAROC per quarter emission reduction credits to the Freeport McMoran Point Pedernales Project. This facility was included in the emission reduction agreement between Unocal and the District dated August 11, 1986. The ROC credits come from the control of emissions from the three wash tanks and the crude storage tank. The tank emissions include flashing losses from the first wash tank the produced fluid enters. A memo dated April 26, 1988 to the PTO 6708 file 7.2.56 written by Al Ronyecz, the project manager at the time, documents the flashing loss calculations. These credits are verified through annual process parameter monitoring. A complete description of the emission mitigations required for the Point Pedernales Project is in Permit to Operate 6708 for the Lompoc Oil and Gas Plant.

8.0 Lead Agency Permit Consistency

To the best of the District's knowledge, no other governmental agency's permit requires air quality mitigation.

TABLE OF CONTENTS

Page

9.A STANDARD A	DMINISTRATIVE CONDITIONS	. 44
Condition A.1	Compliance With Permit Conditions	.44
Condition A.2	Emergency Provisions	
Condition A.3	Compliance Plan	
Condition A.4	Right of Entry	
Condition A.5	Permit Life	
Condition A.6	Payment of Fees	
Condition A.7	Prompt Reporting of Deviations	
Condition A.8	Reporting Requirements/Compliance Certification	
Condition A.9	Federally-Enforceable Conditions	
	Record keeping Requirements	
	Conditions for Permit Reopening	
	Grounds for Revocation	
	Consistency with Analysis	
	Severability	
	Compliance	
Condition 1110	compnance	• • •
9.B GENERIC CON	IDITIONS	. 47
Condition B.1	Circumvention (Rule 301)	
Condition B.2	Visible Emissions (Rule 302)	
Condition B.3	Nuisance (Rule 303)	
Condition B.4	Specific Contaminants (Rule 309)	
Condition B.5	Organic Solvents (Rule 317)	
Condition B.6	Metal Surface Coating Thinner and Reducer (Rule 322)	
Condition B.7	Architectural Coatings (Rule 323.I)	
Condition B.8	Disposal and Evaporation of Solvents (Rule 324)	
Condition B.9	Emissions of NOx From Water Heaters and Boilers (Rule 360)	·
	Boilers, Steam Generators, and Process Heaters (Rule 361)	
Condition B.11	Emergency Episode Plans (Rule 603)	. 49
	Adhesives and Sealants (Rule 353)	
	Oil and Natural Gas Production MACT	
Condition B.14	CARB Registered Portable Equipment	.49
9.C REQUIREMEN	TS AND EQUIPMENT SPECIFIC CONDITIONS	.50
Condition C.1	Fugitive Hydrocarbon Component Emissions	50
Condition C.2	Petroleum Storage and Processing Tanks	
Condition C.3	Wastewater Tanks, Sumps and Pits	
Condition C.4	Well Cellars Recordkeeping	
Condition C.5	Loading Rack	
Condition C.6	Solvent Usage Emission Offsets	
Condition C.7	Requirements for Produced Gas	
Condition C.8	Semi-Annual Monitoring/Compliance Verification Reports	
Condition C.9	Documents Incorporated by Reference	
	Emission Offsets	

9.D DISTRICT-ON	LY CONDITIONS	58
Condition D.1	Condition Acceptance	59
	Facility Throughput Limitations	
Condition D.3	Abrasive Blasting Equipment	59
Condition D.4	Process Stream Sampling and Analysis	59
Condition D.5	Annual Compliance Verification Reports	59
Condition D.6	Mass Emission Limitations	60
Condition C.11	GHG Emission Standards for Crude Oil and Gas Facilities	60
Condition C.12	CARB GHG Regulation Recordkeeping	60
Condition C.13	CARB GHG Regulation Reporting	60

9.0 Permit Conditions

This section lists the applicable permit conditions for the Newlove Lease. Section A lists the standard administrative conditions. Section B lists 'generic' permit conditions, including emission standards, for all equipment in this permit. Section C lists conditions affecting specific equipment. Section D lists non-federally-enforceable (i.e., District only) permit conditions. Conditions listed in Sections A, B and C are enforceable by the USEPA, the District, the State of California and the public. Conditions listed in Section D are enforceable only by the District and the State of California. Where any reference contained in Sections 9.A, 9.B or 9.C refers to any other part of this permit, that part of the permit referred to is federally-enforceable. In case of a discrepancy between the wording of a condition and the applicable federal or District rule(s), the wording of the rule shall control.

For the purposes of submitting compliance certifications or establishing whether or not a person has violated or is in violation of any standard in this permit, nothing in the permit shall preclude the use, including the exclusive use, of any credible evidence or information, relevant to whether a source would have been in compliance with applicable requirements if the appropriate performance or compliance test had been performed.

9.A Standard Administrative Conditions

The following federally-enforceable administrative permit conditions apply to the Newlove Lease:

A.1 **Compliance with Permit Conditions.**

- (a) The permittee shall comply with all permit conditions in Sections 9.A, 9.B and 9.C.
- (b) This permit does not convey property rights or exclusive privilege of any sort.
- (c) Any permit noncompliance constitutes a violation of the Clean Air Act and is grounds for enforcement action; for permit termination, revocation and re-issuance, or modification; or for denial of a permit renewal application.
- (d) It shall not be a defense for the permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.
- (e) A pending permit action or notification of anticipated noncompliance does not stay any permit condition.
- (f) Within a reasonable time period, the permittee shall furnish any information requested by the Control Officer, in writing, for the purpose of determining:
 - (i) compliance with the permit, or
 - (ii) whether or not cause exists to modify, revoke and reissue, or terminate a permit or for an enforcement action. [*Re: 40 CFR Part 70.6, District Rules 1303.D.1*]
- (g) In the event that any condition herein is determined to be in conflict with any other condition contained herein, then, if principles of law do not provide to the contrary, the condition most protective of air quality and public health and safety shall prevail to the extent feasible.

A.2 Emergency Provisions. Revoked.

A.3 **Compliance Plan.**

- (a) The permittee shall comply with all federally-enforceable requirements that become applicable during the permit term, in a timely manner, as identified in any compliance plan required under any federally-enforceable rules or standards.
- (b) For all applicable equipment, the permittee shall implement and comply with any specific compliance plan required under any federally-enforceable rules or standards. [*Re: District Rule 1302.D.2*]
- A.4 **Right of Entry.** The Regional Administrator of USEPA, the Control Officer, or their authorized representatives, upon the presentation of credentials, shall be permitted to enter upon the premises where a Part 70 Source is located or where records must be kept:
 - (a) To inspect the stationary source, including monitoring and control equipment, work practices, operations, and emission-related activity;
 - (b) To inspect and duplicate, at reasonable times, records required by this Permit to Operate;
 - (c) To sample substances or monitor emissions from the source or assess other parameters to assure compliance with the permit or applicable requirements, at reasonable times. Monitoring of emissions can include source testing. [*Re: District Rule 1303.D.2*]
- A.5 **Permit Life.** The Part 70 permit shall become invalid three years from the date of issuance unless a timely and complete renewal application is submitted to the District. Any operation of the source to which this Part 70 permit is issued beyond the expiration date of this Part 70 permit and without a valid Part 70 operating permit (or a complete Part 70 permit renewal application) shall be a violation of the CAAA, § 502(a) and 503(d) and of the District rules.

The permittee shall apply for renewal of the Part 70 permit not later than 6-months before the date of the permit expiration. Upon submittal of a timely and complete renewal application, the Part 70 permit shall remain in effect until the Control Officer issues or denies the renewal application. [*Re: District Rule 1304.D.1*]

A.6 **Payment of Fees.** The permittee shall reimburse the District for all its Part 70 permit processing and compliance expenses for the stationary source on a timely basis. Failure to reimburse on a timely basis shall be a violation of this permit and of applicable requirements and can result in forfeiture of the Part 70 permit. Operation without a Part 70 permit subjects the source to potential enforcement action by the District and the USEPA pursuant to section 502(a) of the Clean Air Act. [*Re: District Rules 1303.D.1 and 1304.D.11, 40 CFR 70.6*]

- A.7 **Prompt Reporting of Deviations.** The permittee shall submit a written report to the District documenting each and every deviation from the requirements of this permit or any applicable federal requirements within 7 days after discovery of the violation, but not later than 180-days after the date of occurrence. The report shall clearly document 1) the probable cause and extent of the deviation, 2) equipment involved, 3) the quantity of excess pollutant emissions, if any, and 4) actions taken to correct the deviation. The requirements of this condition shall not apply to deviations reported to District in accordance with Rule 505. *Breakdown Conditions*. [District Rule 1303.D.1, 40 CFR 70.6(a) (3)]
- A.8 **Reporting Requirements/Compliance Certification.** The permittee shall submit compliance certification reports to the USEPA and the Control Officer every six months. A paper copy, as well as a complete PDF electronic copy of these reports, shall be in a format approved by the District. These reports shall be submitted on District forms and shall identify each applicable requirement/condition of the permit, the compliance status with each requirement/condition, the monitoring methods used to determine compliance, whether the compliance was continuous or intermittent, and include detailed information on the occurrence and correction of any deviations (excluding emergency upsets) from permit requirement. The reporting periods shall be each half of the calendar year, e.g., January through June for the first half of the year. These reports shall be submitted in accordance with the "Semi-Annual Monitoring/Compliance Verification Report" condition in section 9.C. The permittee shall include a written statement from the responsible official, which certifies the truth, accuracy, and completeness of the reports. [*Re: District Rules 1303.D.1, 1302.D.3, 1303.2.c*]
- A.9 **Federally-Enforceable Conditions.** Each federally-enforceable condition in this permit shall be enforceable by the USEPA and members of the public. None of the conditions in the District-only enforceable section of this permit are federally-enforceable or subject to the public/USEPA review. [*Re: CAAA, § 502(b)(6), 40 CFR 70.6*]
- A.10 **Recordkeeping Requirements.** Records of required monitoring information shall include the following:
 - (a) The date, place as defined in the permit, and time of sampling or measurements;
 - (b) The date(s) analyses were performed;
 - (c) The company or entity that performed the analyses;
 - (d) The analytical techniques or methods used;
 - (e) The results of such analyses; and
 - (f) The operating conditions as existing at the time of sampling or measurement;

The records (electronic or hard copy), as well as all supporting information including calibration and maintenance records, shall be maintained for a minimum of five (5) years from date of initial entry by the permittee and shall be made available to the District upon request. [*Re: District Rule* 1303.D.1.f, 40CFR70.6(a)(3)(ii)(A)]

- A.11 **Conditions for Permit Reopening.** The permit shall be reopened and revised for cause under any of the following circumstances:
 - (a) <u>Additional Requirements</u>: If additional applicable requirements (e.g., NSPS or MACT) become applicable to the source which has an unexpired permit term of three (3) or more years, the permit shall be reopened. Such a reopening shall be completed no later than 18 months after promulgation of the applicable requirement. However, no such reopening is

required if the effective date of the requirement is later than the date on which the permit is due to expire, unless the original permit or any of its terms and conditions has been extended. All such re-openings shall be initiated only after a 30-day notice of intent to reopen the permit has been provided to the permittee, except that a shorter notice may be given in case of an emergency.

- (b) <u>Inaccurate Permit Provisions</u>: If the District or the USEPA determines that the permit contains a material mistake or that inaccurate statements were made in establishing the emission standards or other terms or conditions of the permit, the permit shall be reopened. Such re-openings shall be made as soon as practicable.
- (c) <u>Applicable Requirement</u>: If the District or the USEPA determines that the permit must be revised or revoked to assure compliance with any applicable requirement including a federally-enforceable requirement, the permit shall be reopened. Such re-openings shall be made as soon as practicable.

Administrative procedures to reopen and revise/revoke/reissue a permit shall follow the same procedures as apply to initial permit issuance. Re-openings shall affect only those parts of the permit for which cause to reopen exists.

If a permit is reopened, the expiration date does not change. Thus, if the permit is reopened, and revised, then it will be reissued with the expiration date applicable to the re-opened permit. [*Re: 40 CFR 70.7, 40 CFR 70.6*]

- A.12 **Grounds for Revocation.** Failure to abide by and faithfully comply with this permit or any Rule, Order, or Regulation may constitute grounds for the APCO to petition for permit revocation pursuant to California Health & Safety Code Section 42307 *et seq.*
- A.13 **Consistency with Analysis.** Operation under this permit shall be conducted consistent with all data, specifications and assumptions included with the application and supplements thereof (as documented in the District's project file), and with the District's analyses under which this permit is issued as documented in the Permit Analyses prepared for and issued with the permit.
- A.14 **Severability.** In the event that any condition herein is determined to be invalid, all other conditions shall remain in force.
- A.15 **Compliance.** Nothing contained within this permit shall be construed to allow the violation of any local, State or Federal rule, regulation, ambient air quality standard or air quality increment.

9.B. Generic Conditions

The generic conditions listed below apply to all emission units, regardless of their category or emission rates. In case of a discrepancy between the wording of a condition and the applicable federal or District rule(s), the wording of the rule shall control.

B.1 **Circumvention (Rule 301).** A person shall not build, erect, install, or use any article, machine, equipment or other contrivance, the use of which, without resulting in a reduction in the total release of air contaminants to the atmosphere, reduces or conceals an emission which would otherwise constitute a violation of Division 26 (Air Resources) of the Health and Safety Code of the State of California or of these Rules and Regulations. This Rule shall not apply to cases in

which the only violation involved is of Section 41700 of the Health and Safety Code of the State of California, or of District Rule 303. [*Re: District Rule 301*]

- B.2 **Visible Emissions (Rule 302).** The permittee shall not discharge into the atmosphere from any single source of emission any air contaminants for a period or periods aggregating more than three minutes in any one hour which is:
 - (a) As dark or darker in shade as that designated as No. 1 on the Ringlemann Chart, as published by the United States Bureau of Mines, or
 - (b) Of such opacity as to obscure an observer's view to a degree equal to or greater than does smoke described in subsection B.2.(a) above. [*Re: District Rule 302*]
- B.3 **Nuisance (Rule 303).** No pollutant emissions from any source at the permittee shall create nuisance conditions. Operations shall not endanger health, safety or comfort, nor shall they damage any property or business. [*Re: District Rule 303*]
- B.4 **Specific Contaminants (Rule 309).** The permittee shall not discharge into the atmosphere from any single source sulfur compounds and combustion contaminants (particulate matter) in excess of the applicable standards listed in Sections A through E of Rule 309. [*Re: District Rule 309*].
- B.5 **Organic Solvents (Rule 317).** The permittee shall comply with the emission standards listed in Rule 317.B. Compliance with this condition shall be based on the permittee's compliance with Condition C.5 of this permit. [*Re: District Rule 317*]
- B.6 **Metal Surface Coating Thinner and Reducer (Rule 322).** The use of photochemically reactive solvents as thinners or reducers in metal surface coatings is prohibited. Compliance with this condition shall be based on the permittee's compliance with Condition C.5 of this permit and facility inspections. [*Re: District Rule 322*]
- B.7 Architectural Coatings (Rule 323.I). The permittee shall comply with the coating ROC content and handling standards listed in Section D of Rule 323 as well as the Administrative requirements listed in Section F of Rule 323. Compliance with this condition shall be based on the permittee's compliance with Condition C.5 of this permit and facility inspections. [*Re: District Rules 323, 317, 322, 324*]
- B.8 **Disposal and Evaporation of Solvents (Rule 324).** The permittee shall not dispose through atmospheric evaporation of more than one and a half gallons of any photochemically reactive solvent per day. Compliance with this condition shall be based on the permittee's compliance with Condition C.5 of this permit and facility inspections. [*Re: District Rule 324*]
- B.9 Emissions of Oxides Of Nitrogen From Large Water Heaters and Small Boilers (Rule 360). This rule applies to any person who supplies, sells, offers for sale, installs, or solicits the installation of any new water heater, boiler, steam generator or process heater for use within the District with a rated heat input capacity greater than or equal to 75,000 Btu/hour up to and including 2,000,000 Btu/hour. There are no new units at this facility that are subject to this rule.
- B.10 Small Boilers, Steam Generators, and Process Heaters (Rule 361). The permittee shall comply with the requirements of District Rule 361: *Small Boilers, Steam Generators, and Process Heaters* whenever a new boiler, process heater or other external combustion device is added or an existing unit is replaced.

- B.11 **Emergency Episode Plans (Rule 603).** During emergency episodes, the permittee shall implement the Emergency Episode Plan dated March 30, 1999. [*Reference District Rule 603*]
- B.12 Adhesives and Sealants (Rule 353). The permittee shall not use adhesives, adhesive bonding primers, adhesive primers, sealants, sealant primers, or any other primers, unless the permittee complies with the following:
 - (a) Such materials used are purchased or supplied by the manufacturer or suppliers in containers of 16 fluid ounces or less; or alternately
 - (b) When the permittee uses such materials from containers larger than 16 fluid ounces and the materials are not exempt by Rule 353, Section B.1, the total reactive organic compound emissions from the use of such material shall not exceed 200 pounds per year unless the substances used and the operational methods comply with Sections D, E, F, G, and H of Rule 353. Compliance shall be demonstrated by recordkeeping in accordance with Section B.2 and/or Section O of Rule 353. [*Re: District Rule 353*]
- B.13 Oil and Natural Gas Production MACT. The permittee shall comply with the requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPS) for Oil and Natural Gas Production and Natural Gas Transmission and Storage (promulgated June 17, 1999). At a minimum, the permittee shall maintain records in accordance with 40 CFR Part 63, Subpart A, Section 63.10 (b) (1) and (3). [*Re: 40 CFR 63, Subpart HH*]
- B.14 **CARB Registered Portable Equipment.** State registered portable equipment shall comply with State registration requirements. A copy of the State registration shall be readily available whenever the equipment is at the facility. [*Re: District Rule 202*]

9.C Requirements and Equipment Specific Conditions

This section contains non-generic federally-enforceable conditions, including emissions and operations limits, monitoring, recordkeeping and reporting for each specific equipment group. This section may also contain other non-generic conditions.

C.1 **Fugitive Hydrocarbon Emissions Components.** The following equipment are included in this emissions unit category:

District No.	Equipment
CARB/KVB C	omponents
002980	Valves, Connections, etc.
003042	Pumps/Compressors/Wellheads
Component Le	ak Path Components
112812	Valves - Oil Service
112813	Flanges/Connections - Oil Service
112814	Pump Seals - Oil Service
112500	Valves – Gas Service
112501	Flanges/Connections – Gas Service
113146	Pressure Safety Valves – Gas Service
386204	Valves/Flanges - Gas Service
394721	Valves/Flanges - Oil and Gas Service

- (a) <u>Emission Limits</u>: Fugitive emission limits are not federally-enforceable.
- (b) <u>Operational Limits</u>: Operation of the equipment listed in this section shall conform to the requirements listed in District Rule 331.D and E. Compliance with these limits shall be assessed through compliance with the monitoring, recordkeeping and reporting conditions in this permit. In addition, the permittee shall meet the following requirements:
 - (i) VRS Use: The vapor recovery/gas collection (VRGC) system shall be in operation when the equipment connected to the VRGC system at the facility is in use. The VRGC system includes piping, valves, and flanges associated with the VRGC system. The VRGC system shall be maintained and operated to minimize the release of emissions from all systems, including pressure relief valves and gauge hatches.
 - (ii) I&M Program: The District-approved I&M Plan shall be implemented for the life of the project. The Plan, and any subsequent District approved revisions, is incorporated by reference as an enforceable part of this permit. An updated Fugitive Emissions Inspection and Maintenance Plan must be submitted to the District for review and approval within one calendar quarter whenever there is a change in the component list or diagrams.
 - (iii) *Venting:* All routine venting of hydrocarbons shall be routed to either a sales compressor, flare header, injection well or other District-approved control device.
- (c) <u>Monitoring</u>: The equipment listed in this section are subject to all the monitoring requirements listed in District Rule 331.F. The test methods in Rule 331.H shall be used, when applicable.

- (d) <u>Recordkeeping</u>: All inspection and repair records shall be retained at the source for a minimum of five years. The equipment listed in this section are subject to all the recordkeeping requirements listed in District Rule 331.G.
- (e) <u>Reporting</u>: On a semi-annual basis, a report detailing the previous six-month's activities shall be provided to the District. The report must list all data required by the *Semi-Annual Compliance Verification Reports* condition of this permit. [*Re: District Rules 331 and 1303, 40 CFR 70.6*]
- C.2 **Petroleum Storage and Processing Tanks.** The following equipment is included in this emissions category:

Dev No	Equipment Name; Capacity
394720	Wash Tank, 3,000 bbl capacity
109949	Wash Tank, 3,000 bbl capacity
388303	Wash Tank, 3,000 bbl capacity
002974	Crude Storage Tank, 1,000 bbl capacity

- (a) <u>Emission Limits</u>: Mass emission for the tanks listed above shall not exceed the limits listed in Tables 5.1-3 and 5.1-4.
- (b) <u>Operational Limits</u>:
 - (i) Facility Throughput Limitations. The Newlove Lease production shall be limited to a monthly average of 3,000 barrels of (dry) oil per day. The permittee shall record in a log the volumes of oil produced and the actual number of days in production per month. The above limits are based on actual days of operation during the month.
 - (ii) Emission Reduction Credits: Real, Surplus, Quantifiable and Enforceable: The emission reductions created by the control of four tanks (Dev. Nos 002974, 394720, 109949, and 388303) are for use as offsets for the Point Pedernales Project to meet the requirements under PTO 6708. Emission reduction measures (i.e., vapor recovery with a control efficiency maintained at 95% or greater) implemented to create the required emission reductions shall be in place and maintained for the life of the Project.

To assure that offsets are real, quantifiable, surplus and enforceable, the permittee shall not utilize a shift in load from the controlled tanks subject to this permit to other uncontrolled point sources at the stationary source as a means of generating additional emission reduction credits (ERCs). For the purposes of this condition, shift in load is defined as a redirecting of produced fluids from a controlled source to an uncontrolled source for the sole purpose of increasing the uncontrolled source baseline throughput resulting in the generation of false surplus ERC's. If such shift in load does occur, the increased emissions at the uncontrolled point source shall not be considered in any baseline calculation for possible ERC for that uncontrolled point source and the ERCs provided by this permit to the Point Pedernales project shall become invalid.

(iii) Degassing: Pursuant to Rule 343, Sections D, E, F and G, the permittee shall use a control device, approved in advance by the District, when degassing or purging any stationary tanks, vessels, or containers which meet the applicability requirements of Rule 343.A. Except for emergency cases, the Control Officer shall be notified in

writing at least two weeks prior to the start of the emptying operation for the purpose of degassing any aboveground tank subject to this rule.

- (b) <u>Monitoring</u>:
 - (i) The volumes of oil (bbls) produced from this facility shall be measured through the use of calibrated meters or through the use of a District-approved alternate method. The meter shall be calibrated according to manufacturer's specifications and the calibration records shall be made available to the District upon request.
 - (ii) The equipment listed in this section shall be subject to all the monitoring requirements of District Rule 325.H. The test methods outlined in District Rule 325.G shall be used, when applicable. In addition, the permittee shall, for all degassing events, monitor the volume purged, characteristics of the vapor purged, and control device/method used.
 - (iii) On an annual basis, at the initial tank, or other storage tanks if requested in writing by the District, (1) the API gravity shall be measured and recorded, and (2) the true vapor pressure (TVP) at the maximum expected temperature of the crude oil shall be measured by using ASTM method D 323-82 (if API gravity is equal to or greater than 20 degrees) or the HOST Method (if API gravity is under 20 degrees), and recorded. Samples of crude oil shall be obtained from the initial crude oil storage tank or an active flow line into that tank or from the tank, provided that there is an active flow of crude oil into the tank.

If ASTM D323 applies, the TVP at the maximum expected temperature shall be calculated from the Reid vapor pressure in accordance with API Bulletin 2518, or equivalent Reid/true vapor pressure correlation. The calculated true vapor pressure shall be based on the maximum expected operating temperature of the initial crude oil storage tank.

(d) <u>Recordkeeping</u>: The following records shall be maintained by the permittee and shall be made available to the District upon request

The volume of oil produced each month and the number of days that oil was produced through the tank battery. On an annual basis, the API gravity and true vapor pressure, calculated at the maximum expected storage temperature of the crude oil in each storage tank shall be recorded according to the test methods described in Rule 325.G. The temperature shall also be recorded at the time of API gravity and vapor pressure tests.

The equipment listed in this section is subject to all the recordkeeping requirements listed in District Rule 325.F. In addition, the permittee shall maintain a log of all degassing events in accordance Rule 343.F.

(e) <u>Reporting</u>: On a semi-annual basis, a report detailing the previous six-month's activities shall be provided to the District. The report must list all data required by the *Semi-Annual Compliance Verification Reports* condition of this permit. [*Re: 40 CFR 70.6, District Rules 206, 325, 343 and 1303*] C.3 **Wastewater Tanks, Sumps and Pits.** The following equipment are included in this emissions category:

Dev No	Equipment Name; Capacity, Size
110332	Wastewater Tank, 1,000 bbl capacity
101173	Wastewater Pit
101174	Wastewater Pit
101175	Wastewater Pit
101177	Spill Catch Pan
101178	Wastewater Pit
101184	Wastewater Pit
101185	Wastewater Pit
113871	Truck Washout Pit #1
113872	Truck Washout Pit #2

- (a) <u>Emission Limits</u>: Mass emissions shall not exceed the limits listed in Tables 5.1-3 and 5.1-4. Emissions from the wastewater pits are not federally-enforceable.
- (b) <u>Operational Limits</u>: The following operational limits shall apply:
 - (i) All process operations for the equipment listed in this section shall meet the requirements of District Rules 325, 343 and 344. Compliance with these limits shall be assessed through compliance with the monitoring, recordkeeping and reporting conditions in this permit.
 - (ii) Pursuant to Rule 343, Sections D, E, F and G, the permittee shall use a control device, approved in advance by the District, when degassing or purging any stationary tanks, vessels, or containers which meet the applicability requirements of Rule 343.A. Except for emergency cases, the Control Officer shall be notified in writing at least two weeks prior to the start of the emptying operation for the purpose of degassing any aboveground tank subject to this rule.
 - (iii) Truck Washout Pits:
 - a. Each washout pit shall be equipped with a wooden wall located no further than 35 feet from weir that separates the pit from the liquid area. The wall shall be in place at all times when liquids are discharged to or stored in the pit.
 - b. All discharge and storage of vacuum truck contents is limited to the area between the weir and the wooden wall. The wall can be removed for access by a front end loader or other maintenance activities.
- (c) <u>Monitoring</u>: The equipment listed in this section is subject to all the monitoring requirements of District Rule 325.H. The test methods outlined in District Rule 325.G shall be used, when applicable. In addition, the permittee shall perform the following compliance monitoring:
 - (i) For all degassing events, monitor the volume purged, characteristics of the vapor purged, and control device/method used.

- (ii) Truck Washout Pits:
 - a. The liquid area of each pit shall be monitored and drained as necessary.
 - b. The pit shall be monitored to ensure that contents are not deposited upstream of the wooden wall. The liquid area of each pit shall be visually inspected drained as necessary such that contents are not deposited upstream of the wooden wall.
- (d) <u>Recordkeeping</u>: The tanks listed in this section are subject to all the recordkeeping requirements listed in District Rule 325.F. In addition, the permittee shall record the following:
 - (i) The permittee shall maintain a log of all degassing events, and record all the parameters listed in Section 9.C.4.(c)(i) above.
 - (ii) Emissions from the washout pits, based on the surface area of the pits and the tertiary pits and sumps emission factor.
- (e) <u>Reporting</u>: On a semi-annual basis, a report detailing the previous six-month's activities shall be provided to the District. The report must list all data required by the *Semi-Annual Compliance Verification Reports* condition of this permit. [*Re: 40 CFR 70.6, District Rules 325, 343, 344 and 1303.D.1.f*]
- C.4 Well Cellars. The following equipment are included in this emissions category:

Dev No	Equipment Name; Capacity, Size
003041	Well Cellars (40)

- (a) <u>Emission Limits</u>: Well cellar emissions are not federally-enforceable.
- (b) <u>Operational Limits</u>: All process operations from the equipment listed in this section shall meet the requirements of District Rule 344. Rule 344.D.3 requires that:
 - (i) A person shall not open any valve at the wellhead without using a portable container to catch and contain any organic liquid that would otherwise drop on the ground or into the well cellar. Such container shall be kept closed when not in use.
 - (ii) Immediately before a well is steamed or after a well head is steam cleaned, the well cellar in which it is located shall be pumped out.
 - (iii) Neither of the following conditions shall occur unless the owner or operator discovered the condition and the well cellar is pumped within 7 days of discovery:
 - a. liquid depth exceeding 50-percent of the depth of the well cellar.
 - b. oil/petroleum depth exceeding 2 inches.

If a well cellar cannot be accessed by a vacuum truck due to muddy conditions, the well cellar shall be pumped as soon as it becomes accessible.

- (c) <u>Monitoring</u>: The permittee shall inspect the well cellars on a weekly basis to ensure that the liquid depth and the oil/petroleum depth does not exceed the limits in Rule 344.D.3.c.
- (d) <u>Recordkeeping</u>: The following information relating to detection of conditions requiring pumping of a well cellar as required in Section D.3.c shall be recorded for each detection:
 - (i) the date of the detection,
 - (ii) the name of the person and company performing the test or inspection, and
 - (iii) the date and time the well cellar is pumped.
- (e) <u>Reporting</u>: None.

(Re: District Rules 344.D.3 and 344.G.2)

- C.5 **Loading Rack.** The following shall apply to the operation of the loading rack:
 - (a) <u>Emission Limitations</u>. The mass emissions from the equipment permitted herein shall not exceed 4.87 lbs/day ROC and 0.10 tpy ROC. Compliance shall be based on the operational, monitoring, recordkeeping and reporting conditions of this permit.
 - (b) <u>Operational Restrictions</u>. The permitted equipment is subject to the following operational restrictions:
 - (i) *Throughput Limitation*. The following throughput limitations shall not be exceeded:

Truck Loading of Oil	<u>160</u>	bbl/hour
Truck Loading of Oil	<u>1,000</u>	bbl/day
Truck Loading of Oil	<u>39,000</u>	bbl/quarter
Truck Loading of Oil	<u>39,000</u>	bbl/year

(ii) Oil Loading Rack Operation. The loading rack used to ship oil from the facility shall use bottom-loading and a vapor recovery system that prevents the vapors displaced during loading from being released into the atmosphere. The operator shall also use either a block and bleed valve system or other connectors with equivalent spill prevention characteristics.

Additionally, the operator shall use one of the following devices to prevent overfill:

- a. A primary overfill protection system consisting of a preset fill meter with automatic flow shutoff and a secondary overfill protection system consisting of a liquid level sensor with the ability to signal high level to activate a control valve to shut off flow, or
- b. A combination of overfill devices and/or procedures, submitted in writing to the Control Officer, that is at least as effective in preventing overfill spillage as the system described immediately above. District written approval must be obtained <u>prior</u> to implementing this option.

- c. *Source Limitation*. Oil from the Diatomite Project shall not be shipped through the loading rack included in this permit unless the land use permit for the Diatomite Project is modified to allow trucking of produced oil.
- (c) <u>Recordkeeping</u>. The following records shall be maintained by the permittee and shall be made available to the District upon request:
 - (i) The dates of oil shipments from the loading rack and the total volume of oil (bbls) shipped on each day listed.
- (d) <u>Reporting</u>: On a semi-annual basis, a report detailing the previous six-month's activities shall be provided to the District. The report must list all data required by the *Semi-Annual Compliance Verification Reports* condition of this permit.
- C.6 **Solvent Usage.** The following items are included in this emissions unit category: Photochemically reactive solvents, surface coatings and general solvents.
 - (a) <u>Emission Limits</u>: The following solvent emission limits are federally-enforceable for the entire stationary source:

Solvent Type	lbs/hour	lbs/day
Photochemically Reactive	8 lbs/hour	40 lbs/day
Non-Photochemically Reactive	450 lbs/hour	3,000 lbs/day

- (b) <u>Operational Limits</u>: Use of solvents for cleaning/degreasing shall conform to the requirements of District Rules 317, 322, 323 and 324. Compliance with these rules shall be assessed through compliance with the monitoring, recordkeeping and reporting conditions in this permit and facility inspections.
 - (i) Reclamation Plan: The permittee may submit a Plan to the District for the disposal of any reclaimed solvent. If the Plan is approved by the District, all solvent disposed of pursuant to the Plan will not be assumed to have evaporated as emissions into the air and, therefore, will not be counted as emissions from the source. The permittee shall obtain District approval of the procedures used for such a disposal Plan. The Plan shall detail all procedures used for collecting, storing and transporting the reclaimed solvent. Further, the ultimate fate of these reclaimed solvents must be stated in the Plan.
- (c) <u>Monitoring</u>: None.
- (d) <u>Recordkeeping</u>: The permittee shall record in a log the following on a monthly basis for each solvent used: amount used; the percentage of ROC by weight (as applied); the solvent density; the amount of solvent reclaimed for District-approved disposal; whether the solvent is photochemically reactive; and, the resulting emissions to the atmosphere in units of pounds per month and pounds per day. Product sheets (MSDS or equivalent) detailing the constituents of all solvents shall be maintained in a manner readily accessible to District inspection.
- (e) <u>Reporting</u>: On a semi-annual basis, a report detailing the previous six-month's activities shall be provided to the District. The report must list all data required by the *Semi-Annual Compliance Verification Reports* condition of this permit.

- C.7 **Requirements for Produced Gas.** The emissions of produced gas shall be controlled at all times using a properly maintained and operated system that directs all produced gas, except gas used in a tank battery vapor recovery system, to one of the following: (a) a system handling gas for fuel, sale, or underground injection; or (b) a flare that combusts reactive organic compounds; or (c) a device with an ROC vapor removal efficiency of at least 90% by weight. The provisions of this condition shall not apply to wells which are undergoing routine maintenance.
- C.8 **Semi-Annual Monitoring/Compliance Verification Reports.** The permittee shall submit a report to the District every six months to verify compliance with the emission limits and other requirements of this permit. The reporting periods shall be each half of the calendar year, e.g., January through June for the first half of the year. These reports shall be submitted by September 1 and March 1, respectively, each year, and shall be in a format approved by the District, with one hard copy and one PDF copy. All logs and other basic source data not included in the report shall be available to the District upon request. The second report shall also include an annual report for the prior four quarters. The report shall include the following information:
 - (a) Rule 331 fugitive hydrocarbon I&M program data:
 - inspection summary.
 - record of leaking components.
 - record of leaks from critical components.
 - record of leaks from components that incur five repair actions within a continuous 12-month period.
 - record of component repair actions including dates of component re-inspections.
 - (b) Surface Coating and Solvent Usage: On a monthly basis the amount of surface coating/solvent used; the percentage of ROC by weight (as applied); the surface coating/solvent density; the amount of solvent reclaimed; whether the surface coating/solvent is photochemically reactive; and, the resulting emissions of ROC and photochemically reactive surface coatings/solvents to the atmosphere in units of pounds per month.
 - (c) The volume of oil produced each month and year, and the number of days each month that oil was produced through the tank battery.
 - (d) API gravity, true vapor pressure and storage temperature of each organic liquid tank required to be measured and recorded.
 - (e) On an annual basis, a log showing the amount of all coatings and solvents used. Reporting may be included in the annual stationary source coating and solvents report as required by this permit.
 - (f) Annual NOx and ROC emissions from both permitted and exempt equipment.
 - (g) Fugitive ROC emissions (tons) by quarter.
 - (h) The dates of oil shipments from the loading rack and the total volume of oil (bbls) shipped on each day listed.

C.9 **Documents Incorporated by Reference.** The documents listed below and any District approved updates thereof, are incorporated herein and shall have the full force and effect of a permit condition for this permit. The documents shall be implemented for the life of the Diatomite Project and shall be made available to District inspection staff upon request.

Enhanced Fugitive Hydrocarbon Inspection and Maintenance Plan (District approved July 2005)

Fuel Use Monitoring Plan (District approved July 2011)

C.10 **Emission Offsets.** PCEC shall offset all oxides of nitrogen (NO_x) and reactive organic compound (ROC) emissions pursuant to Tables 7.3-1, 7.3-2 and 7.3-3 of this permit. Emission reduction credits (ERCs) sufficient to offset the permitted quarterly NO_x and ROC emissions shall be in place for the life of the project.

9.D District-Only Conditions

The following section lists permit conditions that are not federally-enforceable (i.e., not enforceable by the USEPA or the public). However, these conditions are enforceable by the District and the State of California. These conditions have been determined as being necessary to ensure that operation of the facility complies with all applicable local and state air quality rules, regulations and laws. Failure to comply with any of these conditions shall be a violation of District Rule 206, this permit, as well as any applicable section of the California Health & Safety Code.

- D.1 **Condition Acceptance.** Acceptance of this operating permit by the permittee shall be considered as acceptance of all terms, conditions, and limits of this permit.
- D.2 **Facility Throughput Limitations.** Total Newlove Lease production (non-thermal plus Diatomite) shall be limited to a monthly average of 3,000 barrels of (dry) oil per day. The permittee shall record in a log the volumes of oil produced and the actual number of days in production per month. The above limits are based on actual days of operation during the month.
- D.3 **Abrasive Blasting Equipment.** All abrasive blasting activities performed on the Newlove Lease shall comply with the requirements of the California Administrative Code Title 17, Sub-Chapter 6, Sections 92000 through 92530.
- D.4 **Process Stream Sampling and Analysis.** The permittee shall sample analyze the process streams listed in Section 4.9 of this permit according to the methods and frequency detailed in that Section. All process stream samples shall be taken according to District approved ASTM methods and must follow traceable chain of custody procedures.
- D.5 **Annual Compliance Verification Reports.** The permittee shall submit a report to the District, by March 1 of each year containing the information listed below and shall document compliance with all applicable permit requirements. A paper copy, as well as a complete PDF electronic copy of these reports shall be in a format approved by the District. These reports shall be in a format approved by the District. All logs and other basic source data not included in the report shall be available to the District upon request. Pursuant to Rule 212, the annual report shall include a completed *District Annual Emissions Inventory* questionnaire, or the questionnaire may be submitted electronically via the District website. The report shall include the following information:
 - (a) API gravity, true vapor pressure and storage temperature of the oil.
 - (b) Oil processed through the tank battery along with the number of days per month of production.
 - (c) Breakdowns and variances reported/obtained per Regulation V along with the excess emissions that accompanied each occurrence.
 - (d) The ROC and NO_X emissions from all permit exempt activities (tons per year by device/activity).
 - (e) The annual emission totals of all pollutants in tons per year for each emission unit and summarized for the entire facility.

- D.6 **Mass Emission Limitations**. Mass emissions for each equipment item (i.e., emissions unit) shall not exceed the values listed in Table 5.1-3 and 5.1-4. Emissions for the entire facility shall not exceed the total limits listed in Table 5.2.
- D.7 **Greenhouse Gas Emission Standards for Crude Oil and Natural Gas Facilities.** The equipment permitted herein shall be operated in compliance with the California Greenhouse Gas Emission Standards for Crude Oil and Natural Gas Facilities regulation (CCR Title 17, Section 95665 *et. Seq.*).
- D.8 **CARB GHG Regulation Recordkeeping.** The permittee shall maintain at least 5 years of records that document the following:
 - (a) The number of crude oil or natural gas wells at the facility.
 - (b) A list identifying all pressure vessels, tanks, separators, sumps, and ponds at the facility, including the size of each tank and separator in units of barrels.
 - (c) The annual crude oil, natural gas, and produced water throughput of the facility.
 - (d) A list identifying all reciprocating and centrifugal natural gas compressors at the facility.
 - (e) A count of all natural gas powered pneumatic devices and pumps at the facility.
 - (f) A copy of the *Best Practices Management Plan* designed to limit methane emissions from circulation tanks, if applicable.
- D.9 **CARB GHG Regulation Reporting**. On an annual basis, the permittee shall report all throughput data and any updates to the information recorded pursuant to the *CARB GHG Regulation Recordkeeping* Condition above using District Annual Report Form ENF-108. This report shall be submitted by March 1 of each year detailing the previous year's activities.

Air Pollution Control Officer

June 14, 2024

Date

NOTES:

- (a) This permit supersedes PTO 8240-R11
- (b) Permit Reevaluation Due Date: June 1, 2027

10.0 Attachments

- 10.1 Emission Calculation Documentation
- 10.2 Emission Calculation Spreadsheets
- 10.3 Equipment List
- 10.4 Well List
- 10.5 Comments on Draft Permit/District Responses

10.1 EMISSION CALCULATION DOCUMENTATION – NEWLOVE LEASE

This attachment contains all relevant emission calculation documentation used for the emission tables in Section 5. Refer to Section 4 for the general equations. Detailed calculation spreadsheets are attached as Attachment 10.2. The letters A - D refer to Tables 5.1-1 and 5.1-2.

Reference A - Petroleum Storage Tanks

→ The hourly/daily/annual emissions for the petroleum storage tanks is based on USEPA AP-42 Chapter 7, Liquid Storage Tanks (5th Edition, 2/96)

Reference B - Pits, Sumps and Wastewater Tank

- \rightarrow The maximum operating schedule is in units of hours;
- → Emission calculation methodology based on the CARB/KVB report *Emission Characteristics of Crude Oil Production Operations in California (1/83)*;
- \rightarrow Calculations are based on surface area of emissions noted in the inspector's report;
- \rightarrow All separator units are classified as secondary production and heavy oil service;
- → The THC Speciation is based on CARB profiles # 529, 530, 531, 532; the ROC/TOC ratio is based on the District's guideline "VOC/ROC Emission Factors and Reactivities for Common Source Types" Table dated 07/13/98 (version 1.1).

Reference C - Pipeline Components Emitting Fugitive ROCs

- \rightarrow Emission factors are based on the *District P&P 6100.060* guidelines.
- → In determining the facility model using the CARB/KVB methodology for fugitive emissions, a default Gas Oil Ratio of 501 scf/bbl was used. This value assumes the worst case model.
- \rightarrow An 80% reduction in fugitive emissions was assumed due to the implementation of a fugitive inspection and maintenance plan pursuant to Rule 331.

Reference E - Solvents

- \rightarrow All solvents not used to thin surface coatings are included in this equipment category
- \rightarrow Daily and annual emission rates assumed to be minimal (0.01 lb/day, 0.01 TPY)

10.2 Emission Calculation Spreadsheets

FIXED ROOF TANK CALCULATION (AP-42: Chapter 7 Method)

liquid {1:G13, 2:G10, 3:G7, 4:C, 5:JP, 6:ker, 7:O2, 8:O6} =	4
liquid TVP =	3.2
if TVP is entered, enter TVP temperature (°F) =	120
tank heated {yes, no} =	nc
if tank is heated, enter temp (°F) =	
vapor recovery system present? {yes, no} =	yes
is this a wash tank? {yes, no} =	yes
will flashing losses occur in this tank? {yes, no} =	nc
breather vent pressure setting range (psi) (def = 0.06):	0.06

Talik Data		
diameter (feet) =		29.7
capacity (enter barrels in first col, gals will compute) =	3,000	126,000
conical or dome roof? {c, d} =		с
shell height (feet) =		24
roof height (def = 1):		1
ave liq height (feet):		23
color {1:Spec Al, 2:Diff Al, 3:Lite, 4:Med, 5:Rd, 6:Wh} =		4
condition {1: Good, 2: Poor} =		1

upstream pressure (psig) (def = 0 when no flashing occurs):

maximum daily throughput (bopd) = Ann thruput (gal): (enter value in Column A if not max PTE)

Liquid Data

RVP (psia):

°API gravity =

turnovers 3 : turnover factor 4 :

paint factor 5

average 6

maximum 7

diurnal vapor ranges

minimum ⁸ product factor 9 :

Computed Values

vapor space volume 2 (cubic feet):

surface temperatures (°R, °F)

vapor pressure ¹¹ (psia): molecular weight ¹² (lb/lb-mol):

vapor density 14 (lb/cubic foot):

vapor expansion factor 15 vapor saturation factor 16

temperature ¹⁰ (fahrenheit degrees):

TVP¹³ (psia) [adjusted for ave liquid surface temp]:

roof outage 1 (feet):

Attachment:	А
Permit:	PTO 8240-R11
Date:	03/24/21
Tank:	Wash Tank (3)
Name:	Newlove Lease
Filename:	
District:	Santa Barbara
Version:	Tank-2b.xls

0

В

4.599E+07

3,000

2.1455

25

0.3

901

365

0.25

0.68

67.2

79

55.4

0.75

47.2

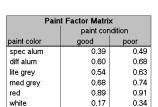
50

0.576496

1.07212 0.009475

0.127

0.931212


A

527.2

539

515.4

PRINT

Adjusted TVP Matrix

TVP value

7.908

5.56

3.932

1.516

0.0103

0.009488

0.0000472

1.07212

liquid

gas rvp 13

gas rvp 10

gas rvp 7

crude oil

fuel oil 2

fuel oil 6

jet kerosene

JP -4

Molecular Weight Matrix		
liquid mol wt		
gas rvp 13	62	
gas rvp 10	66	
gas rvp 7	68	
crude oil	50	
JP -4	80	
jet kerosene	130	
fuel oil 2	130	
fuel oil 6	190	

RVP Matrix		
liquid	RVP value	
gas rvp 13	13	
gas rvp 10	10	
gas rvp 7	7	
crude oil	2.1455	
JP -4	2.7	
jet kerosene	0.029	
fuel oil 2	0.022	
fuel oil 6	0.00019	

Long-Term	
VRU_Eff =	95.00%

Short-Term VRU_Eff = 95.00%

vented vapor volume (scf/bbl): fraction ROG - flashing losses: fraction ROG - evaporative losses:	8 0.308 0.885					
Emissions	Uncontro	lled ROC	emissions	Controlle	d ROC en	nissions
	lb/hr	lb/day	ton/year	lb/hr	lb/day	ton/year
breathing loss ¹⁷ =	0.04	0.89	0.16	0.00	0.04	0.01
working loss 18 =	0.00	0.00	0.00	0.00	0.00	0.00
flashing loss ¹⁹ =	0.00	0.00	0.00	0.00	0.00	0.00
TOTALS =	0.04	0.89	0.16	0.00	0.04	0.01

FIXED ROOF TANK CALCULATION (AP-42: Chapter 7 Method)

Basic Input Data	
liquid {1:G13, 2:G10, 3:G7, 4:C, 5:JP, 6:ker, 7:O2, 8:O6} =	4
liquid TVP =	3.2
if TVP is entered, enter TVP temperature (°F) =	120
tank heated {yes, no} = if tank is heated, enter temp (°F) =	no
vapor recovery system present? {yes, no} =	yes
is this a wash tank? {yes, no} =	no
will flashing losses occur in this tank? {yes, no} =	no
breather vent pressure setting range (psi) (def = 0.06):	0.06

	Attachment:	В
	Permit:	PTO 8240-R11
4	Date:	03/24/21
3.2	Tank:	Crude Tank
120	Name:	Newlove Lease
no	Filename:	
	District:	Santa Barbara
yes	Version:	Tank-2b.xls
no		
no).06	PRINT	

Tank Data		
diameter (feet) =		21.5
capacity (enter barrels in first col, gals will compute) =	1,000	42,000
conical or dome roof? {c, d} =		с
shell height (feet) =		16
roof height (def = 1):		1
ave lig height (feet):		8
color {1:Spec AI, 2:Diff AI, 3:Lite, 4:Med, 5:Rd, 6:Wh} =		4
condition {1: Good, 2: Poor} =		1
upstream pressure (psig) (def = 0 when no flashing occurs):		0

Liquid Data		
	А	В
maximum daily throughput (bopd) =		3,000
Ann thruput (gal): (enter value in Column A if not max PTE)		4.599E+07
RVP (psia):		2.1455
°API gravity =		25

Computed Values

Paint Factor Matrix paint condition				
paint color	good poor			
spec alum	0.39	0.49		
diff alum	0.60	0.68		
lite grey	0.54	0.63		
med grey	0.68	0.74		
red	0.89	0.91		
white	0.17	0.34		

Molecular Weight Matrix			
liquid	mol wt		
gas rvp 13	62		
gas rvp 10	66		
gas rvp 7	68		
crude oil	50		
JP -4	80		
jet kerosene	130		
fuel oil 2	130		
fuel oil 6	190		

roof outage 1 (feet):		0.3
vapor space volume ² (cubic feet):		3,013
turnovers ³ :		1095
turnover factor ⁴ :		0.19
paint factor ⁵ :		0.68
surface temperatures (°R, °F)		
average ⁶ :	527.2	67.2
maximum 7 :	539	79
minimum ⁸ :	515.4	55.4
product factor ⁹ :		0.75
diurnal vapor ranges		
temperature ¹⁰ (fahrenheit degrees):		47.2
vapor pressure ¹¹ (psia):		0.576496
molecular weight ¹² (lb/lb-mol):		50
TVP ¹³ (psia) [adjusted for ave liquid surface temp]:		1.07212
vapor density ¹⁴ (lb/cubic foot):		0.009475
vapor expansion factor ¹⁵ :		0.127
vapor saturation factor ¹⁶ :		0.679521
vented vapor volume (scf/bbl):		8
fraction ROG - flashing losses:		0.308
fraction ROG - evaporative losses:		0.885

Adjusted TVP Matrix		
liquid	TVP value	
gas rvp 13	7.908	
gas rvp 10	5.56	
gas rvp 7	3.932	
crude oil	1.07212	
JP -4	1.516	
jet kerosene	0.0103	
fuel oil 2	0.009488	
fuel oil 6	0.0000472	

RVP Matrix			
liquid	RVP value		
gas rvp 13	13		
gas rvp 10	10		
gas rvp 7	7		
crude oil	2.1455		
JP -4	2.7		
jet kerosene	0.029		
fuel oil 2	0.022		
fuel oil 6	0.00019		

Long-Term VRU_Eff =	95.00%

Short-Term VRU_Eff = 95.00%

Emissions	Uncontrolled ROC emissions			Controlled ROC emissions		
	lb/hr	lb/day	ton/year	lb/hr	lb/day	ton/year
breathing loss ¹⁷ =	0.09	2.18	0.40	0.00	0.11	0.02
working loss ¹⁸ =	0.85	20.28	3.70	0.04	1.01	0.19
flashing loss ¹⁹ =	0.00	0.00	0.00	0.00	0.00	0.00
TOTALS =	0.94	22.46	4.10	0.05	1.12	0.20

FUGITIVE HYDROCARBON CALCULATIONS - CARB/KVB METHOD

Page 1 of 2

ADMINISTRATIVE INFORMATION Attachment: C Company: Pacific Coast Energy Co. Facility: Newlove Lease Processed by: JJM June 4, 2021 Path & File Name:

Version: Date:

fhc-kvb5.xls 24-Oct-00

Reference: CARB speciation profiles #s 529, 530, 531, 532

Data Number of Active Wells at Facility Facility Gas Production Facility Dry Oil Production Facility Gas to Oil Ratio (if > 500 then default to 501) API Gravity Facility Model Number No. of Steam Drive Wells with Control Vents No. of Steam Drive Wells with Uncontrol Vents No. of Cyclic Steam Drive Wells with Control Vents No. of Cyclic Steam Drive Wells with Uncontrol Vents No. of Cyclic Steam Drive Wells with Uncontrol Vents No. of Cyclic Steam Drive Wells with Uncontrol Vents No. of Cyclic Steam Drive Wells with Uncontrol Vents Composite Valve and Fitting Emission Factor

Value	Units	
78	wells	
	scf/day	
	bbls/day	
501	scf/bbl	
25	degrees API	
6	dimensionless	
0	wells	
4.2085	lb/day-well	

Lease Model	Valve ROG Emission Factor Without Ethane	Fitting ROG Emission Factor Without Ethane	Composite ROG Emission Factor Without Ethane	
1	1.4921	0.9947	2.4868	lbs/day-well
2	0.6999	0.6092	1.3091	lbs/day-well
3	0.0217	0.0673	0.0890	lbs/day-well
4	4.5090	2.1319	6.6409	lbs/day-well
5	0.8628	1.9424	2.8053	lbs/day-well
6	1.7079	2.5006	4.2085	lbs/day-well

Model #1: Number of wells on lease is less than 10 and the GOR is less than 500.

Model #2: Number of wells on lease is between 10 and 50 and the GOR is less than 500.

Model #3: Number of wells on lease is greater than 50 and the GOR is less than 500.

Model #4: Number of wells on lease is less than 10 and the GOR is greater than 500.

Model #5: Number of wells on lease is between 10 and 50 and the GOR is greater than 500.

Model #6: Number of wells on lease is greater than 50 and the GOR is greater than 500.

<u>ROC Emission Calculation Summary Results Table</u> <u>Reactive Organic Compounds</u>^(c)

	lbs/hr	lbs/day	tons/year
Valves and Fittings ^(a)	2.74	65.65	11.98
Sumps, Wastewater Tanks and Well Cellars ^(b)	1.97	47.20	8.61
Oil/Water Separators (b)	0.00	0.00	0.00
Pumps/Compressors/Well Heads ^(a)	0.05	1.27	0.23
Enhanced Oil Recovery Fields	0.00	0.00	0.00
Total Facility FHC Emissions (ROC)	4.76	114.13	20.83

a: Emissions amount reflect an 80% reduction due to Rule 331 implementation.

b: Emissions reflect control efficiencies where applicable.

c: Due to rounding, the totals may not appear correct

Page 2 of 2 Emission Calculation by Emission Unit

Pumps, Compressors, and Well Heads Uncontrolled Emission Calculations

Number of Wells	78	wells
Wellhead emissions	0.7566	ROC (lb/well-day)
FHC from Pumps	0.3042	ROC (lb/well-day)
FHC from Compressors	5.2962	ROC (lb/well-day)
Total:	6.3570	ROC (lb/well-day)

Sumps, Uncovered Wastewater Tanks, and Well Cellars

Efficiency Factor: (70% for well cellars, 0% for uncovered WW tanks, sumps and pits) Unit Type/Emissions Factor

	Heavy Oil Service	Light Oil Service	
Primary	0.0941	0.138	(lb ROC/ft ² -day)
Secondary	0.0126	0.018	(lb ROC/ft ² -day)
Tertiary	0.0058	0.0087	(lb ROC/ft ² -day)

Surface Area and Type (emissions in lbs/day)

Number	Area (ft ²)	Primary	Secondary	Tertiary
40	1,440	40.65		
1	5.33	0.50		
1	19.63		0.25	
1	12.57		0.16	
1	3.14		0.04	
1	7.07		0.09	
1	19.63		0.25	
1	12.57		0.16	
1	420			2.44
1	420			2.44
		41.15	0.94	4.88
		40 1,440 1 5.33 1 19.63 1 12.57 1 3.14 1 7.07 1 19.63 1 12.57 1 420	40 1,440 40.65 1 5.33 0.50 1 19.63 1 12.57 1 3.14 1 7.07 1 19.63 1 12.57 1 420 1 420	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

(a) A 70% reduction is applied for implementation

of Rule 344 (Sumps, Pits, and Well Cellars).

Covered Wastewater Tanks

Efficiency Factor: 85%

		Surface Area and Type	(emissions in Ibs/day	()	
Description/Name	Number	Area (ft ²)	Primary	Secondary	Tertiary
			0.00		
				0.00	
					0.00
			0.00	0.00	0.00

Covered Wastewater Tanks Equipped with Vapor Recovery

Efficiency Factor: 95%

Surface Area and Type (emissions in lbs/day)

Description/Name	Number	Area (ft ²)	Primary	Secondary	Tertiary
			0.00		
				0.00	
Wastewater Tank	1	363.05		0.23	
					0.00
			0.00	0.23	0.00

Oil/Water Separators

Efficiency Factor: varies (85% for cover, 95% for VRS, 0% for open top) Emissions Factor: 560 (lb ROC/MM Gal)

		Type (emissions in Ibs/day)							
Description/Name	TP-MM Gal	Equipped with Cover	Equipped with VRS	Open Top	lb/day				
		0.0							
			0.0						
				0.0					
		0.0	0.0	0.0	0.0				

FUGITIVE ROC EMISSIONS CALCULATION

ADMINISTRATIVE INFORMATION									
Attachment: D									
Company: Pacific Coast Energy									
Facility: Newlove Lease									
Processed by: JJM									
Date: 05/11/20									
Path & File Name:									
Paul & Flie Name.									
Facility Type: (Choose one)									
Production Field	X	1							
	×	ROC ⁽²⁾		11		Controlled	Combro llo d	Controlled	Controlled
Gas Processing Plant			DOCITUO	Uncontrolled	BOO	Controlled ROC	Controlled ROC	Controlled	Controlled
Refinery		Emission Factor	ROC/THC Ratio	ROC Emission	ROC Control	Emission	Emission	ROC Emission	ROC Emission
Offshore Platform	(1)		Ratio						
Component	Count ⁽¹⁾	(lbs/day-clp)		(Ibs/day)	Eff	(lbs/hr)	(lbs/day)	(Tons/Qtr)	(Tons/year)
Gas Condensate Service									
Valves - Acc/Inacc	418	0.295	0.31	38.23	0.80	0.32	7.65	0.35	1.40
Valves - Acc/macc Valves - Bellows	410	0.295	0.31	38.23	1.00	0.32	0.00	0.35	0.00
vaives - Bellows Valves - Unsafe		0.295	0.31	0.00	0.00	0.00	0.00	0.00	0.00
		0.295	0.31	0.00	0.00	0.00	0.00	0.00	0.00
Valves - Low Emitting Valves - E-500		0.295	0.31	0.00	0.00	0.00	0.00	0.00	0.00
Valves - E-100	0.775	0.295	0.31	0.00	0.90	0.00	0.00	0.00	0.00
Flanges - Acc/Inacc	2,775	0.070	0.31	60.22	0.80	0.50	12.04	0.55	2.20
Flanges - Unsafe		0.070	0.31	0.00	0.00	0.00	0.00	0.00	0.00
Flanges - E-500		0.070	0.31	0.00	0.85	0.00	0.00	0.00	0.00
Flanges - E-100		0.070	0.31	0.00	0.90	0.00	0.00	0.00	0.00
Compressor Seals - To Atm		2.143	0.31	0.00	0.80	0.00	0.00	0.00	0.00
Compressor Seals - To VRS		2.143	0.31	0.00	1.00	0.00	0.00	0.00	0.00
Compressor Seals - E-500		2.143	0.31	0.00	0.85	0.00	0.00	0.00	0.00
Compressor Seals - E-100		2.143	0.31	0.00	0.90	0.00	0.00	0.00	0.00
PSV - To Atm	1	6.670	0.31	2.07	0.80	0.02	0.41	0.02	0.08
PSV - To VRS		6.670	0.31	0.00	1.00	0.00	0.00	0.00	0.00
PSV - E-500		6.670	0.31	0.00	0.85	0.00	0.00	0.00	0.00
PSV - E-100		6.670	0.31	0.00	0.90	0.00	0.00	0.00	0.00
Pump Seals		1.123	0.31	0.00	0.80	0.00	0.00	0.00	0.00
Pump Seals - E-500		1.123	0.31	0.00	0.85	0.00	0.00	0.00	0.00
Pump Seals - E-100		1.123	0.31	0.00	0.90	0.00	0.00	0.00	0.00
Sub Total	3,194			100.51		0.838	20.102	0.917	3.669
Oil Service	389	0.0041	0.56	0.89	0.80	0.01	0.18	0.01	0.03
Valves - Acc/Inacc Valves - Unsafe	209	0.0041	0.56	0.89	0.80	0.00	0.18	0.01	0.03
valves - Unsate Valves - E-500						0.00	0.00	0.00	0.00
		0.0041	0.56	0.00	0.85				
Valves - E-100	0000	0.0041	0.56	0.00	0.90	0.00	0.00	0.00	0.00
Flanges - Acc/Inacc	2293	0.0020	0.56	2.57	0.80	0.02	0.51	0.02	0.09
Flanges - Unsafe		0.0020	0.56	0.00	0.00	0.00	0.00	0.00	0.00
Flanges - E-500		0.0020	0.56	0.00	0.85	0.00	0.00	0.00	0.00
Flanges - E-100		0.0020	0.56	0.00	0.90	0.00	0.00	0.00	0.00
Pump Seals - Single	44	0.0039	0.56	0.10	0.80	0.00	0.02	0.00	0.00
Pump Seals - E-500		0.0039	0.56	0.00	0.85	0.00	0.00	0.00	0.00
Pump Seals - E-100		0.0039	0.56	0.00	0.90	0.00	0.00	0.00	0.00
PSV - To Atm		0.2670	0.56	0.00	0.80	0.00	0.00	0.00	0.00
PSV - To VRS		0.2670	0.56	0.00	1.00	0.00	0.00	0.00	0.00
PSV - E-500		0.2670	0.56	0.00	0.85	0.00	0.00	0.00	0.00
PSV - E-100	0.70-	0.2670	0.56	0.00	0.00	0.00	0.00	0.00	0.00
Sub Total	2,726			3.557		0.03	0.71	0.03	0.13
				104.07		0.867	20.814	0.950	3.799

Source:
 APCD P&P # 6100.060.1998.
 APCD P&P # 6100.061.1998
 A 80% efficiency is assigned to fugitive components Rule 331 implementation.

FUGITIVE ROC EMISSIONS CALCULATION

ADMINISTRATIVE INFORMATION
Attachment: E (PTO 15506)
Company: PCEC
Facility: Newlove Lease
Processed by: JJM
Date: 05/22/20
Path & File Name:

Facility Type: (Choose one)

Production Field Gas Processing Plant	X	ROC ⁽²⁾		Uncontrolled		Controlled	Controlled	Controlled	Controlle
-			DOC/TUC		DOG				
Refinery		Emission Factor	ROC/THC Ratio	ROC Emission	ROC Control	ROC Emission	ROC Emission	ROC Emission	ROC Emission
Offshore Platform	a (1)		Ratio		Eff				
Component	Count ⁽¹⁾	(lbs/day-clp)		(lbs/day)	Еπ	(lbs/hr)	(lbs/day)	(Tons/Qtr)	(Tons/yea
Gas Condensate Service									
Valves - Acc/Inacc	2	0.295	0.31	0.18	0.80	0.00	0.04	0.00	0.01
Valves - Bellows		0.295	0.31	0.00	1.00	0.00	0.00	0.00	0.00
Valves - Unsafe		0.295	0.31	0.00	0.00	0.00	0.00	0.00	0.00
Valves - Low Emitting		0.295	0.31	0.00	0.00	0.00	0.00	0.00	0.00
Valves - E-500		0.295	0.31	0.00	0.85	0.00	0.00	0.00	0.00
Valves - E-100		0.295	0.31	0.00	0.90	0.00	0.00	0.00	0.00
Flanges - Acc/Inacc	36	0.070	0.31	0.78	0.80	0.01	0.16	0.01	0.03
Flanges - Unsafe		0.070	0.31	0.00	0.00	0.00	0.00	0.00	0.00
Flanges - E-500		0.070	0.31	0.00	0.85	0.00	0.00	0.00	0.00
Flanges - E-100		0.070	0.31	0.00	0.90	0.00	0.00	0.00	0.00
Compressor Seals - To Atm		2.143	0.31	0.00	0.80	0.00	0.00	0.00	0.00
Compressor Seals - To VRS		2.143	0.31	0.00	1.00	0.00	0.00	0.00	0.00
Compressor Seals - E-500		2.143	0.31	0.00	0.85	0.00	0.00	0.00	0.00
Compressor Seals - E-100		2.143	0.31	0.00	0.90	0.00	0.00	0.00	0.00
PSV - To Atm	1	6.670	0.31	2.07	0.80	0.02	0.41	0.02	0.08
PSV - To VRS		6.670	0.31	0.00	1.00	0.00	0.00	0.00	0.00
PSV - E-500		6.670	0.31	0.00	0.85	0.00	0.00	0.00	0.00
PSV - E-100		6.670	0.31	0.00	0.90	0.00	0.00	0.00	0.00
Pump Seals		1.123	0.31	0.00	0.80	0.00	0.00	0.00	0.00
Pump Seals - E-500		1.123	0.31	0.00	0.85	0.00	0.00	0.00	0.00
Pump Seals - E-100		1.123	0.31	0.00	0.90	0.00	0.00	0.00	0.00
Sub Total	39			3.03		0.03	0.61	0.028	0.111
Oil Service									
Valves - Acc/Inacc	3	0.0041	0.56	0.01	0.80	0.00	0.00	0.00	0.00
Valves - Unsafe		0.0041	0.56	0.00	0.00	0.00	0.00	0.00	0.00
Valves - E-500		0.0041	0.56	0.00	0.85	0.00	0.00	0.00	0.00
Valves - E-100		0.0041	0.56	0.00	0.90	0.00	0.00	0.00	0.00
Flanges - Acc/Inacc	15	0.0020	0.56	0.02	0.80	0.00	0.00	0.00	0.00
Flanges - Unsafe		0.0020	0.56	0.00	0.00	0.00	0.00	0.00	0.00
Flanges - E-500		0.0020	0.56	0.00	0.85	0.00	0.00	0.00	0.00
Flanges - E-100		0.0020	0.56	0.00	0.90	0.00	0.00	0.00	0.00
Pump Seals - Single		0.0039	0.56	0.00	0.80	0.00	0.00	0.00	0.00
Pump Seals - E-500		0.0039	0.56	0.00	0.85	0.00	0.00	0.00	0.00
Pump Seals - E-100		0.0039	0.56	0.00	0.90	0.00	0.00	0.00	0.00
PSV - To Atm		0.2670	0.56	0.00	0.80	0.00	0.00	0.00	0.00
PSV - To VRS		0.2670	0.56	0.00	1.00	0.00	0.00	0.00	0.00
PSV - E-500		0.2670	0.56	0.00	0.85	0.00	0.00	0.00	0.00
PSV - E-100		0.2670	0.56	0.00	0.00	0.00	0.00	0.00	0.00
Sub Total	18	0.2010	0.00	0.024	0.00	0.00	0.00	0.00	0.00
	57			3.06		0.03	0.61	0.03	0.11

4. A 80% efficiency is assigned to fugitive components Rule 331 implementation.

FUGITIVE ROC EMISSIONS CALCULATION

ADMINISTRATIVE INFORMATION									
Attachment: F (PTO 14019)									
Company: PCEC									
Facility: Newlove Lease									
Processed by: JJM									
Date: 05/22/20									
Path & File Name:									
auror ne name.									
Facility Type: (Choose one)									
Production Field	X								
Gas Processing Plant		ROC ⁽²⁾		Uncontrolled		Controlled	Controlled	Controlled	Controlled
Refinery		Emission	ROC/THC	ROC	ROC	ROC	ROC	ROC	ROC
Offshore Platform		Factor	Ratio	Emission	Control	Emission	Emission	Emission	Emission
Component	Count ⁽¹⁾	(lbs/day-clp)		(lbs/day)	Eff	(lbs/hr)	(lbs/day)	(Tons/Qtr)	(Tons/year
Gas Condensate Service		1							
/alves - Acc/Inacc	5	0.295	0.31	0.46	0.80	0.00	0.09	0.00	0.02
/alves - Bellows		0.295	0.31	0.00	1.00	0.00	0.00	0.00	0.00
/alves - Unsafe		0.295	0.31	0.00	0.00	0.00	0.00	0.00	0.00
/alves - Low Emitting		0.295	0.31	0.00	0.00	0.00	0.00	0.00	0.00
/alves - E-500		0.295	0.31	0.00	0.85	0.00	0.00	0.00	0.00
Valves - E-100		0.295	0.31	0.00	0.90	0.00	0.00	0.00	0.00
Flanges - Acc/Inacc	63	0.070	0.31	1.37	0.80	0.01	0.27	0.01	0.05
Flanges - Unsafe		0.070	0.31	0.00	0.00	0.00	0.00	0.00	0.00
Flanges - E-500		0.070	0.31	0.00	0.85	0.00	0.00	0.00	0.00
langes - E-100		0.070	0.31	0.00	0.90	0.00	0.00	0.00	0.00
Compressor Seals - To Atm	1	2.143	0.31	0.66	0.80	0.01	0.13	0.01	0.02
Compressor Seals - To VRS		2.143	0.31	0.00	1.00	0.00	0.00	0.00	0.00
Compressor Seals - E-500		2.143	0.31	0.00	0.85	0.00	0.00	0.00	0.00
Compressor Seals - E-100		2.143	0.31	0.00	0.90	0.00	0.00	0.00	0.00
PSV - To Atm		6.670	0.31	0.00	0.80	0.00	0.00	0.00	0.00
PSV - To VRS		6.670	0.31	0.00	1.00	0.00	0.00	0.00	0.00
PSV - E-500		6.670	0.31	0.00	0.85	0.00	0.00	0.00	0.00
PSV - E-100		6.670	0.31	0.00	0.90	0.00	0.00	0.00	0.00
Pump Seals		1.123	0.31	0.00	0.80	0.00	0.00	0.00	0.00
Pump Seals - E-500		1.123	0.31	0.00	0.85	0.00	0.00	0.00	0.00
Pump Seals - E-100		1.123	0.31	0.00	0.90	0.00	0.00	0.00	0.00
Sub Total	69			2.49		0.02	0.50	0.023	0.091
Dil Service									
/alves - Acc/Inacc		0.0041	0.56	0.00	0.80	0.00	0.00	0.00	0.00
/alves - Unsafe		0.0041	0.56	0.00	0.00	0.00	0.00	0.00	0.00
/alves - E-500		0.0041	0.56	0.00	0.85	0.00	0.00	0.00	0.00
/alves - E-100		0.0041	0.56	0.00	0.90	0.00	0.00	0.00	0.00
Flanges - Acc/Inacc		0.0020	0.56	0.00	0.90	0.00	0.00	0.00	0.00
Flanges - Unsafe		0.0020	0.56	0.00	0.00	0.00	0.00	0.00	0.00
Flanges - E-500		0.0020	0.56	0.00	0.85	0.00	0.00	0.00	0.00
Flanges - E-100		0.0020	0.56	0.00	0.85	0.00	0.00	0.00	0.00
Pump Seals - Single		0.0039	0.56	0.00	0.90	0.00	0.00	0.00	0.00
Pump Seals - E-500		0.0039	0.56	0.00	0.80	0.00	0.00	0.00	0.00
Pump Seals - E-300 Pump Seals - E-100		0.0039	0.56	0.00	0.85	0.00	0.00	0.00	0.00
PSV - To Atm		0.2670	0.56	0.00	0.90	0.00	0.00	0.00	0.00
PSV - To VRS		0.2670	0.56	0.00	1.00	0.00	0.00	0.00	0.00
PSV - E-500		0.2670	0.56	0.00	0.85	0.00	0.00	0.00	0.00
PSV - E-500 PSV - E-100		0.2670	0.56	0.00	0.85	0.00	0.00	0.00	0.00
Sub Total	0	0.2010	0.00	0.000	0.00	0.00	0.00	0.00	0.00
Tatal	60			2.40		0.00	0.50	0.00	0.00
Total	69			2.49		0.02	0.50	0.02	0.09
lotes: Source:									
. APCD P&P # 6100.060.1998.									
. / a OD / dl # 0100.000.1550.									

APCD P&P # 6100.060.1998.
 APCD P&P # 6100.061.1998
 A 80% efficiency is assigned to fugitive components Rule 331 implementation.

	LOADING RACK E	MISSION CA		ON (vei	r 3.0)		
A#==b====t			Defe	1!	Deale		
Attachment: Company:	G Pacific Coast Energy		Reference: Rack Type:		Rack as Appropriate		S Factor
Facility:	Newlove Lease		Ruck Type.	Submerged	oading of a clean cargo		0.50
File Name:					oading: Dedicated normal	x	0.60
The Nume.					oading: Dedicated vapor		1.00
				balance serv Splash loadir	ice ng of a clean cargo tank		1.00
				Splash loadir service	ng: Dedicated normal		1.45
					ng: Dedicated vapor ice		1.00
	Input data						Reference
	S = Saturation Factor	0.60	See AP-42	Table 4.4	-1		2
	M = Molecular Weight	50	Crude Oil:	Default =	50 lb/lb-mole		3
	P = True Vapor Pressure (psia)	3.600	See AP-42				1
	T = Liquid Temperature ⁰ R	580	120) ^⁰ F + 460) = ⁰ R		5
	R = Loading Rate (bbl/hr)	160.00	· · · · ·	gallons	(42 gallons = 1		1
	C = Storage Capacity (bbl)	1,000		gallons	(42 gallons = 1		1
	D = Daily Production (bbl)	1,300			(42 gallons = 1	· · ·	4
	A = Annual Production (bbl) eff = Vapor Recovery Efficiency	39,000 0.95	1,638,000 Default = 0.	-	(42 gallons = 1	001)	1
	ROC/THC = Reactivity	0.885	Crude Oil:		0 885		
	$HLPY = hours loading per year = L_L = Loading loss (lb/1000 gal) = -$		-		243.75 2.3201	hours/ye lb/1000 g	
	Total Uncontrolled Hydrocarbo	n Losses:				-	
	Hourly THL _H = (R)(42 gal/bbl)(L _L /1000) =					15.59	lbs/hr
	Daily						
	THL _D = (THL _H)(HLPD) = Annual					97.45	_lbs/day
	$THL_A = (HLPY)((THL_H)(1/2000) =$					1.90	TPY
	Total Controlled Hydrocarbon L	osses:					
	Hourly						
	THL _{HC} = (THL _H)(1-eff) = Daily					0.78	lbs/hr
	$THL_{DC} = (THL_{D})(1-eff) =$					4.87	lbs/day
	Annual					0.005	
	$THL_{AC} = (THL_A)(1-eff) =$					0.095	TPY
Dreesered			D-1	Marsh	4 0001		
Processed by:	JJM		Date	March 2	4, 2021		

Notes:

- 1. Data provided by the applicant
- 2. AP-42, (Chapter 5, 5th Edition, January 1995), Table 5.2-1
- 3. If not otherwise provided, crude oil is assumed to be 50 lb/lb-mole.
- 4. If not otherwise provided, vapor pressure is calculated from CARB AB-2588 Guidelines, page 103, eq. 25
- 5. R is calculated by adding 460 to $^{\rm 0}{\rm F}.$

10.3 Equipment List

Santa Barbara County Air Pollution Control District – Equipment List

PT-70/Reeval 08240 R11 / FID: 03321 Newlove Lease / SSID: 02667

A PERMITTED EQUIPMENT

1 Fugitive Components

1.1 Valves - Gas Service

Device ID #	112500	Device Name	Valves - Gas Service
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	418 clps		
Description	*		

1.2 Flanges & Connections - Gas Service

Device ID #	112501	Device Name	Flanges & Connections - Gas Service
Rated Heat Input Manufacturer		Physical Size Operator ID	
Model Location Note		Serial Number	
Device Description	2775 clps		

1.3 Pressure Safety Valves - Gas Service

Device ID #	113146	Device Name	Pressure Safety Valves - Gas Service
Rated Heat Input Manufacturer		Physical Size Operator ID	
Model		Serial Number	
Location Note	Newlove Lease		
Device	1 clp		
Description	-		

1.4 Valves - Oil Service

<i>Device ID #</i>	112812	Device Name	Valves - Oil Service
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	389 clps		
Description	*		

1.5 Flanges/Connections - Oil Service

Device ID #	112813	Device Name	Flanges/Connections - Oil Service
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	2,293 clps		
Description	· 1		

1.6 Pump Seals - Oil Service

Device ID #	112814	Device Name	Pump Seals - Oil Service
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	44 clps		
Description	•		

1.7 Fugitive Hydrocarbon Components

Device ID #	386204	Device Name	Fugitive Hydrocarbon Components
Rated Heat Input		Physical Size	69.00 Component Leakpath
Manufacturer		Operator ID	-
Model		Serial Number	
Location Note			
Device	Gas/Condensate	Service	
Description	Valves Acc/Inac	c = 5 clps	
	Flanges/Connections Acc/Inacc = 63 clps		
	Compressor Seal		
	Associated with	backup VRU-02 per PTO 1	4019.

1.8 Fugitive Hydrocarbon Components

Device ID #	394721	Device Name	Fugitive Hydrocarbon Components
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	Gas/Condensate Se	rvice Components: Valv	es - Accessible/Inaccessible =
Description	2, Flanges/Connect	ions - Accessible/Inacce	ssible = 36, PSV - To
-	Atm/Flare = 1; Oil Service Components: Valves - Accessible/Inaccessible		
	= 3, Flanges/Conne	ctions - Accessible/Inac	cessible $= 15$

2 O&G Wells, Cellars and Unassociated Valves & Flanges

2.1 Well Cellars

Device ID #	003041	Device Name	Well Cellars
Rated Heat Input		Physical Size	1440.00 Square Feet Cellar Area
Manufacturer		Operator ID	
Model		Serial Number	
Location Note Device Description	40 well cellars eac	h approximately 6' by 6' (2	36 SF each).

2.2 Oil and Gas Wellheads

<i>Device ID #</i>	003042	Device Name	Oil and Gas Wellheads
Rated Heat Inpu	t	Physical Size	78.00 Total Wells
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device			
Description			

3 Tanks

3.1 Crude Oil Storage Tank

Device ID #	002974	Device Name	Crude Oil Storage Tank
Rated Heat Input		Physical Size	1000.00 BBL
Manufacturer		Operator ID	5586
Model		Serial Number	
Location Note			
Device	21.5' in dia. by 1	5.4' high, connected to the v	apor recovery system.
Description	•	C .	

3.2 Wash Tank

Device ID #	394720	Device Name	Wash Tank
Rated Heat Input		Physical Size	3000.00 BBL
Manufacturer		Operator ID	T-3
Model		Serial Number	
Location Note			
Device	Dimensions: 29.	7' diameter x 24' high, maxi	mum throughput of 3,000
Description	bbl/day, connect	ted to vapor recovery	

3.3 Wash Tank

<i>Device ID #</i>	109949	Device Name	Wash Tank
Rated Heat Input		Physical Size	3000.00 BBL
Manufacturer	TARSCO	Operator ID	T-640
Model		Serial Number	
Location Note			
Device	29.7' dia. by 24' h	high, connected to the vapor	recovery system.
Description			

3.4 Wash Tank

Device ID #	388303	Device Name	Wash Tank
Rated Heat Input		Physical Size	3000.00 BBL
Manufacturer		Operator ID	
Model		Serial Number	
Location Note	Newlove Lease		
Device	Fixed roof tank		
Description	29.7 feet in diamete	r by 24 feet high.	
	Connected to vapor recovery.		
		979 under ATC 14693 d	ue to floor replacement

Wastewater Tank 3.5

<i>Device ID #</i>	107475	Device Name	Wastewater Tank
Rated Heat Input		Physical Size	10000.00 BBL
Manufacturer		Operator ID	
Model		Serial Number	
Location Note	Newlove Lease		
Device	55' diameter x 24' h	igh; connected to the var	oor recovery system
Description			

3.6 Wastewater Tank

Device ID #	110332	Device Name	Wastewater Tank
Rated Heat Input		Physical Size	1000.00 BBL
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	21.5' dia. by 16	' high, connected to the vapo	r recovery system.
Description	•		

4 Pits and Sumps

4.1 Wastewater Pit

Device ID #	101173	Device Name	Wastewater Pit
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	5 ' dia.		
Description			

4.2 Wastewater Pit

Device ID #	101174	Device Name	Wastewater Pit
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	4' dia.		
Description			

4.3 Wastewater Pit

Device ID #	101175	Device Name	Wastewater Pit
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	2' dia.		
Description			

4.4 Wastewater Pit

Device ID #	101184	Device Name	Wastewater Pit
Rated Heat Inpu	t	Physical Size	
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	5' dia.		
Description			

4.5 Pit Pumps

Device ID #	101176 De	evice Name	Pit Pumps
Rated Heat Input	Pl	nysical Size	
Manufacturer	Oj.	perator ID	
Model	Se	rial Number	
Location Note			
Device	Each pump driven by a 7.5	hp electric motor.	
Description	· · ·	•	

4.6 Spill Catch Pan

Device ID #	101177	Device Name	Spill Catch Pan
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	24" wide by 32'	long, located near the meter	prover connection.
Description	•	<u> </u>	•

4.7 Wastewater Pit

Device ID #	101178	Device Name	Wastewater Pit
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	3' dia.		
Description			

4.8 Wastewater Pit

<i>Device ID #</i>	101185	Device Name	Wastewater Pit
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	4' dia.		
Description			

4.9 Vacuum Truck Washout Pit #1

Device ID #	113871	Device Name	Vacuum Truck Washout Pit #1
Rated Heat Input		Physical Size	1.00 Installation
Manufacturer		Operator ID	
Model		Serial Number	
Location Note	Newlove Lease		
Device	Liquid Area $= 5$ ft	$t \ge 12 \text{ ft} = 60 \text{ sq ft}$	
Description	Truck Washout A	rea = 12 ft x 35 ft = 420 sc	ı ft
I I I I I I I I I I I I I I I I I I I	Equipped with a v	wooden wall 35 ft from the	liquid area. The wall is made
		ds held in place by angle i	

4.10 Vacuum Truck Washout Pit #2

Device ID #	113872	Device Name	Vacuum Truck Washout Pit #2
Rated Heat Input		Physical Size	1.00 Installation
Manufacturer		Operator ID	
Model		Serial Number	
Location Note	Newlove Lease		
Device	Liquid Area $= 5$ f	ft x 12 ft = 60 sq ft	
Description	Truck Washout A	Area = $12 \text{ ft x } 35 \text{ ft} = 420 \text{ sc}$	q ft
I I I I I I I I I I I I I I I I I I I	Equipped with a	wooden wall 35 ft from the	liquid area. The wall is made
	of 2 in x 6 in boa	rds held in place by angle i	rons.

5 LACT Transfer System

5.1 Charge Pump

Device ID #	101181	Device Name	Charge Pump
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	Driven by a 10 h	p electric motor.	
Description	·	•	

5.2 Sample Pump

Device ID #	101182	Device Name	Sample Pump
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	Driven by a 1.5	hp electric motor.	
Description	2	•	

5.3 Shipping Pump

Device ID #	101183	Device Name	Shipping Pump
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	Driven by a 10	hp electric motor.	
Description	2	*	

6 Weigh Meters

Device ID #	101186	Device Name	Weigh Meters
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	Each 4' dia. by 5	high, connected to the gas	gathering system. (A1, A2,
Description	•	F2 test meters; D1 test vesse	

7 Gas/Liquid Separators

Device ID #	101187	Device Name	Gas/Liquid Separators
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	Each 3' dia. by	10' high, connected to the ga	s gathering system.
Description	•		0

8 Gas/Liquid Separator

Device ID #	114716	Device Name	Gas/Liquid Separator
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	4' dia. by 6' long	g, connected to the gas gathe	ering system.
Description			

9 Blowdown Vessel

Device ID #	101189	Device Name	Blowdown Vessel
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	1' dia. by 12' long.		
Description	v c		

10 Blowdown Vessel Blowcase

Device ID #	101190	Device Name	Blowdown Vessel Blowcase
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	3' dia. by 4' long	g. (Blowcases 2703-B, 2763-	-C, 2705C, 2705C Pig)
Description			

11 Condensate Storage Vessel

Device ID #	107854	Device Name	Condensate Storage Vessel
Rated Heat Inpu	t	Physical Size	1055.00 Gallons
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device			
Description			

12 Vapor Recovery System

Device ID #	112557	Device Name	Vapor Recovery System
Rated Heat Input		Physical Size	15.00 Horsepower (Electric Motor)
Manufacturer	Hy-Bon Engineering	Operator ID	
Model	HB 50	Serial Number	
Location Note			
Device	Serving one wastewater tank (107475), three wash tanks (2973, 2978, &		
Description	2979), and one crude ta assumed to be 95% by		

13 Automatic Well Tester

Device ID #	112817	Device Name	Automatic Well Tester
Rated Heat Input		Physical Size	1.00 Installation
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	Two feet in diam	eter by 5 feet long, horizon	tal, connected to the gas
Description	gathering system.	Includes two header syst	tems referred to as Pipe Rack
-	B-2 and Pipe Rac	k B-3.	-

14 Lease Automatic Custody Transfer - Phase 1

14.1 Oil Tank Battery Sump Pump

Device ID #	109470	Device Name	Oil Tank Battery Sump Pump
Rated Heat Input		Physical Size	2.00 Horsepower (Electric Motor)
Manufacturer	Stancor	Operator ID	P-280
Model	SSD-200	Serial Number	
Location Note	Newlove Lease		
Device Description	Line size: 2"; 40 gpr	m@ 50' TDH; driver = 30	600 rpm

14.2 Produced Water Transfer Pump

Device ID #	109471	Device Name	Produced Water Transfer Pump
Rated Heat Input		Physical Size	20.00 Horsepower (Electric Motor)
Manufacturer	Goulds	Operator ID	P-335A
Model	3196MTX	Serial Number	727F460 1W3
Location Note	Newlove Lease		
Device	320 gpm @ 160 ft	TDH, size: 1-1/2x3-10, dr	fiver $rpm = 3500$
Description			_

14.3 LACT Charge Pump

Device ID #	109472	Device Name	LACT Charge Pump
Rated Heat Input		Physical Size	20.00 Horsepower (Electric Motor)
Manufacturer		Operator ID	P-361A
Model		Serial Number	
Location Note	Newlove Lease		
Device	110 gpm@50 ft TE	OH, size: 2x2, driver rpm	= 1750, part of LACT
Description		Ĩ	^

14.4 Sample Pump

Device ID #	109473	Device Name	Sample Pump
Rated Heat Input		Physical Size	1.50 Horsepower (Electric Motor)
Manufacturer		Operator ID	P-368
Model		Serial Number	
Location Note	Newlove Lease		
Device	line size: 0.5"; 12 g	pm@60 psi; part of LAC	T Unit
Description	0.		

14.5 Produced Water Transfer Pump

Device ID #	109474	Device Name	Produced Water Transfer Pump
Rated Heat Input		Physical Size	20.00 Horsepower (Electric Motor)
Manufacturer	Goulds	Operator ID	P-335B
Model	3196MTX	Serial Number	727F460 2W3
Location Note	Newlove Lease		
Device	320 gpm @ 160 ft	t TDH, size: 1-1/2x3-10, dr	river $rpm = 3500$
Description			-

14.6 LACT Charge Pump

Device ID #	109475	Device Name	LACT Charge Pump
Rated Heat Input		Physical Size	20.00 Horsepower (Electric Motor)
Manufacturer		Operator ID	P-361B

Model	Serial Number
Location Note	Newlove Lease
Device	110 gpm@50 ft TDH, size 2x2" line, driver rpm = 1750, part of LACT
Description	

14.7 Reject Tank Pump

Device ID #	109476	Device Name	Reject Tank Pump
Rated Heat Input		Physical Size	10.00 Horsepower (Electric Motor)
Manufacturer	Tuthill	Operator ID	P-365A
Model	GG 120	Serial Number	G10751
Location Note	Newlove Lease		
Device Description	116 gpm@60 ft TDI	H; 3" line; driver $rpm = 1$	1750

14.8 Reject Tank Pump

Device ID #	109477	Device Name	Reject Tank Pump
Rated Heat Input		Physical Size	10.00 Horsepower (Electric Motor)
Manufacturer	Tuthill	Operator ID	P-365B
Model	GG 120	Serial Number	G10758
Location Note	Newlove Lease		
Device	116 gpm@60 ft TD	H; 3" line; driver rpm =	1750
Description			

14.9 Oil Pan Drain Pump

Device ID #	109478	Device Name	Oil Pan Drain Pump
Rated Heat Input		Physical Size	1.50 Horsepower (Electric Motor)
Manufacturer		Operator ID	P-369
Model		Serial Number	
Location Note	Newlove Lease		
Device Description	Line size = 1 "; 12 g	pm@60 psig; part of LA	CT Unit

15 Hydrogen Sulfide Scrubber

Device ID #	113142	Device Name	Hydrogen Sulfide Scrubber
Rated Heat Input		Physical Size	1.00 Installation
Manufacturer		Operator ID	
Model		Serial Number	
Location Note	Newlove Lease	- Serving compressor K-4	
Device	Vertical, 13 feet	high by 4 feet in diameter.	Uses Sulfa Scrub or
Description	equivalent to rep	nove hydrogen sulfide from	produced gas.

16 Crude Oil Loading Rack

Device ID #	113485	Device Name	Crude Oil Loading Rack
Rated Heat Input Manufacturer Model		Physical Size Operator ID Serial Number	160.00 BBL/Day
Location Note Device Description	Crude oil loadir	ng rack connected to the exist	ting vapor recovery system.

17 Vapor Recovery Unit

Device ID #	386203	Device Name	Vapor Recovery Unit
Rated Heat Input		Physical Size	15.00 Horsepower (Electric Motor)
Manufacturer	Hy-Bon	Operator ID	
Model	HB-50	Serial Number	TBD
Location Note	Newlove Tank Ba	attery	
Device	The unit serves the	ree wash tanks (IDs# 2973	, 109949, & 2979), the crude
Description	U (2974), and the wastewater ficiency of 95% by weight	

10.4 Well List

Pacific Coast Energy Company LP

Newlove Lease O&G Wells

Well Count = 78

Formatted API	Well 💌	Well Statu 💌	Pool WellType 🕫	Section 💌	Township	Range	Latitude	Longitud
083-02287	31	А	OB	25	09N	34W	34.8249393	-120.4046591
083-00648	100	А	OG	30	09N	33W	34.8245942	-120.3908162
083-02266	2	А	OG	31	09N	33W	34.8194522	-120.4012952
083-02267	3	А	OG	36	09N	34W	34.8191071	-120.4069278
083-02274	14	А	OG	36	09N	34W	34.82098	-120.4027251
083-02277	18	I.	OG	25	09N	34W	34.8353375	-120.4058501
083-02278	19	А	OG	24	09N	34W	34.8369352	-120.4028258
083-02285	27	А	OG	26	09N	34W	34.8262773	-120.4214297
083-02286	29	I.	OG	25	09N	34W	34.8261322	-120.4107902
083-02288	32	А	OG	25	09N	34W	34.8282633	-120.4043386
083-02291	36	А	OG	25	09N	34W	34.8314679	-120.4098392
083-02292	37	А	OG	30	09N	33W	34.8284636	-120.392624
083-02295	40	I	OG	31	09N	33W	34.8191658	-120.3991046
083-02297	42	А	OG	30	09N	33W	34.8242916	-120.3969943
083-02301	46	А	OG	32	09N	33W	34.8190495	-120.3775074
083-02303	48	А	OG	32	09N	33W	34.8211595	-120.3787737
083-02306	51	А	OG	25	09N	34W	34.82901	-120.413986
083-02307	52	А	OG	25	09N	34W	34.827997	-120.415029
083-02308	54	А	OG	25	09N	34W	34.8263702	-120.4171347
083-02309	55	А	OG	25	09N	34W	34.8265132	-120.4132429
083-02310	56	А	OG	26	09N	34W	34.8273171	-120.4194736
083-02311	57	А	OG	25	09N	34W	34.8232193	-120.4155952
083-02312	58	А	OG	35	09N	34W	34.8213716	-120.4195906
083-02314	62	А	OG	25	09N	34W	34.824805	-120.414728
083-02315	63	I.	OG	30	09N	33W	34.83309	-120.3976457
083-02316	64	А	OG	25	09N	34W	34.8338256	-120.4068059
083-02317	65	А	OG	26	09N	34W	34.8246236	-120.4214333
083-02318	68	А	OG	25	09N	34W	34.830493	-120.4117831
083-02319	69	А	OG	25	09N	34W	34.8281433	-120.4105713
083-02320	71	А	OG	25	09N	34W	34.8231868	-120.4177009
083-02321	72	А	OG	25	09N	34W	34.8292623	-120.4117015
083-02322	73	А	OG	26	09N	34W	34.8255365	-120.4194356
083-02323	74	А	OG	25	09N	34W	34.8297201	-120.4079061
083-02326	81	I	OG	25	09N	34W	34.833775	-120.401792
083-02327	82	А	OG	26	09N	34W	34.8230986	-120.4211898
083-02332	90	А	OG	30	09N	33W		-120.3991223
083-02333	91	А	OG	30	09N	33W	34.8318744	-120.4018034
083-02334	92	А	OG	30	09N	33W	34.8302727	-120.3926037
083-02335	93	А	OG	30	09N	33W	34.8350615	-120.3968974
083-02336	94	А	OG	30	09N	33W	34.8264466	-120.3973546
083-02337	95	А	OG	19	09N	33W		-120.3969269
083-02338	96	А	OG	30	09N	33W	34.8227961	-120.3930084
083-02340	99	А	OG	30	09N	33W	34.8227729	-120.3886171
083-02342	102	А	OG	30	09N	33W		-120.3952366
083-20320	104	А	OG	31	09N	33W	34.821095	-120.3943566

083-20386	106	Α	OG	25	09N	34W	34.8321823	-120.4115733
083-20510	107	I.	OG	25	09N	34W	34.822607	-120.411798
083-21377	200	I.	OG	36	09N	34W	34.8215475	-120.4160001
083-21433	108	Α	OG	36	09N	34W	34.8214804	-120.4172985
083-21951	17A	Α	OG	35	09N	34W	34.8194132	-120.420946
083-22212	110	А	OG	25	09N	34W	34.8306079	-120.4145004
083-22227	105	Α	OG	30	09N	33W	34.8331903	-120.39755
083-22425	302	А	OG	30	09N	33W	34.8230117	-120.395071
083-22447	303	Α	OG	25	09N	34W	34.821733	-120.4060226
083-22448	300H	А	OG	25	09N	34W	34.829749	-120.409865
083-22449	304	А	OG	30	09N	34W	34.8262698	-120.3973056
083-22502	305H	Α	OG	36	09N	34W	34.8212945	-120.4075908
083-22503	306H	А	OG	25	09N	34W	34.8293226	-120.4137082
083-22506	307H	А	OG	31	09N	34W	34.8192414	-120.3970371
083-22510	308 H	Α	OG	25	09N	34W	34.8313277	-120.4066868
083-22514	310H	А	OG	25	09N	34W	34.8303863	-120.4117605
083-22515	312H	А	OG	25	09N	34W	34.8281625	-120.410422
083-22518	309H	А	OG	25	09N	34W	34.8283319	-120.4044612
083-22519	311H	Α	OG	25	09N	34W	34.8313052	-120.40469
083-22524	112	А	OG	30	09N	33W	34.8245189	-120.3977623
083-22525	111	А	OG	31	09N	33W	34.8196688	-120.4013544
083-22526	113	А	OG	30	09N	33W	34.8244897	-120.390925
083-22529	313H	А	OG	30	09N	33W	34.8263945	-120.3973203
083-22531	314H	А	OG	30	09N	33W	34.8265736	-120.3973618
083-22533	315H	А	OG	36	09N	34W	34.821232	-120.4075215
083-22543	317H	Α	OG	36	09N	34W	34.8195509	-120.4040021
083-22545	325H	Α	OG	30	09N	33W	34.8330325	-120.3976912
083-22546	321H	А	OG	25	09N	34W	34.8263007	-120.4171772
083-22547	322H	А	OG	25	09N	34W	34.8232559	-120.4156211
083-22548	326H	А	OG	30	09N	33W	34.8329866	-120.3977121
083-22549	327H	N	OG	31	09N	33W	34.8196107	-120.401308
083-22629	328H	А	OG	31	09N	33W	34.8195441	-120.4012981
083-22642	329H	А	OG	30	09N	33W	34.8245829	-120.3977764

10.5 Comments on the Draft Permit

GENERAL COMMENTS

1. It is necessary to confirm that if the new permits are issued in June 2024, the required reporting for the Semi-Annual report (January - June 2024) will be based on the current permits issued in 2021, not the newly issued re-evals.

District Response: This is correct.

2. Please update Mr. Phil Brown's title from Vice President of Operations to Chief Operation Officer.

District Response: This change has been made.

3. Discussion of the stationary Source under Figure 1.1, it is stated that Careaga Lease was purchased in 2024 where in fact it was purchased and transferred in May 2022.

District Response: This change has been made.

4. Why has Condition A.2. Emergency Provisions been revoked?

District Response: EPA has instructed the District to remove emergency affirmative defense provisions from all title V permits. On July 12, 2023, the U.S. Environmental Protection Agency (EPA) removed the emergency affirmative defense provisions from Clean Air Act (CAA) operating permit program (title V) regulations. These provisions are found in EPA's regulations under title V of the CAA, located at 40 CFR 70.6(g) (applicable to state/local/tribal permitting authorities) and 71.6(g) (applicable when EPA is the permitting authority). See the fact sheet from EPA here: https://www.epa.gov/system/files/documents/2023-07/Fact%20Sheet%20-%20Affirmative%20Defense%20Final%20Rule.pdf.

5. Every lease at Orcutt Hill is routinely inspected annually, the draft permits state that only one inspection has been conducted 2021. This should be updated.

District Response: This lease is not consistently inspected on an annual basis. The date of the last inspection since issuance of the prior permit renewal is more appropriate. No change made.

SPECIFIC COMMENTS

1. Section 3.5.3. A regular variance 2024-02-R was heard and approved. Since the interim and regular variance were issued for SG 100, should this discussion be in the Part II of the Newlove permit for the Diatomite project.

District Response: This change has been made.

PART II

PACIFIC COAST ENERGY COMPANY LP

NEWLOVE LEASE - DIATOMITE FACILITY

ORCUTT HILL/CASMALIA OILFIELDS SANTA BARBARA COUNTY, CALIFORNIA

PART II - DIATOMITE PROJECT

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	PURPOSE	1
1.2	FACILITY OVERVIEW	
1.3	Emission Sources	5
1.4	Emission Control Overview	6
1.5	OFFSETS/EMISSION REDUCTION CREDIT OVERVIEW	6
1.6	Part 70 Operating Permit Overview	6
2.0	PROCESS DESCRIPTION	8
2.1	Process Summary	
2.2	SUPPORT SYSTEMS	
2.3	MAINTENANCE/DEGREASING ACTIVITIES	
2.4	PLANNED PROCESS TURNAROUNDS	
2.5	Other Processes	8
2.6	DETAILED PROCESS EQUIPMENT LISTING	8
3.0	REGULATORY REVIEW	9
3.1	RULE EXEMPTIONS CLAIMED	Q
3.2	COMPLIANCE WITH APPLICABLE FEDERAL RULES AND REGULATIONS	
3.3	COMPLIANCE WITH APPLICABLE STATE RULES AND REGULATIONS	
3.4	COMPLIANCE WITH APPLICABLE LOCAL RULES AND REGULATIONS	
3.5	Compliance History	
4.0	ENGINEERING ANALYSIS	21
4.1	General	
4.2	STATIONARY COMBUSTION SOURCES	
4.3	FUGITIVE HYDROCARBON SOURCES	
4.4	TANKS/VESSELS/SUMPS/SEPARATORS	
4.5	OTHER EMISSION SOURCES	
4.6	VAPOR RECOVERY/CONTROL SYSTEMS	23
4.7	BACT/NSPS/NESHAP/MACT	
4.8	CEMS/PROCESS MONITORING/CAM	
4.9	SOURCE TESTING/SAMPLING	
4.10	PART 70 ENGINEERING REVIEW: HAZARDOUS AIR POLLUTANT EMISSIONS	
5.0	EMISSIONS	
5.1	General	
5.2	Permitted Emission Limits - Emission Units	
5.3	Permitted Emission Limits - Facility Totals	
5.4	Part 70: Federal Potential to Emit for the Facility	
5.5	Part 70: Hazardous Air Pollutant Emissions for the Facility	
5.6	EXEMPT EMISSION SOURCES/PART 70 INSIGNIFICANT EMISSIONS	
6.0	AIR QUALITY IMPACT ANALYSES	40
6.1	Modeling	
6.2	INCREMENTS	
6.3	MONITORING	40
6.4	HEALTH RISK ASSESSMENT	40

7.0	CAP CONSISTENCY, OFFSET REQUIREMENTS AND ERCS	41
7.1	GENERAL	41
7.2	CLEAN AIR PLAN	41
7.3	OFFSET REQUIREMENTS	41
7.4	EMISSION REDUCTION CREDITS	43
8.0	LEAD AGENCY PERMIT CONSISTENCY	43
9.0	PERMIT CONDITIONS	46
9.0 9.A	PERMIT CONDITIONS	
		46
9.A	Standard Administrative Conditions	46 49 51

LIST OF ATTACHMENTS

10.0 ATTACHMENTS

- 10.1 Emission Calculation Documentation
- 10.2 **Emission Calculation Spreadsheets**
- IDS Database Emission Equipment List Permitted Wells 10.3
- 10.4
- 10.5
- Fee Calculations 10.6
- Comments on Draft Permit/District Responses 10.7

LIST OF FIGURES AND TABLES

Page Number

FIGURE 1.1 - LOCATION MAP FOR THE NEWLOVE LEASE	3
TABLE 1.1 - NEW SOURCE REVIEW OVERVIEW	5
TABLE 3.1 - GENERIC FEDERALLY-ENFORCEABLE DISTRICT RULES	16
TABLE 3.2 - UNIT-SPECIFIC FEDERALLY-ENFORCEABLE DISTRICT RULES	18
TABLE 3.3 - NON-FEDERALLY-ENFORCEABLE DISTRICT RULES	18
TABLE 3.4 - ADOPTION DATES OF DISTRICT RULES	19
TABLE 5.1-1 - OPERATING EQUIPMENT DESCRIPTION	27
TABLE 5.1-2 - EMISSION FACTORS	28
TABLE 5.1-3 - HOURLY AND DAILY EMISSION LIMITS BY EMISSION UNIT	29
TABLE 5.1-4 - QUARTERLY AND ANNUAL EMISSION LIMITS BY EMISSION UNIT	30
TABLE 5.5-1 - EQUIPMENT HAP EMISSION FACTORS	35
TABLE 5.5-2 - HOURLY AND ANNUAL HAP EMISSIONS	36

ABBREVIATIONS/ACRONYMS

AP-42	USEPA's Compilation of Emission Factors
District	Santa Barbara County Air Pollution Control District
API	American Petroleum Institute
ASTM	American Society for Testing Materials
BACT	Best Available Control Technology
bpd	barrels per day (1 barrel = 42 gallons)
CAM	compliance assurance monitoring
CEMS	continuous emissions monitoring
dscf	dry standard cubic foot
EU	emission unit
-	
°F	degree Fahrenheit
gal	gallon
gr	grain
HAP	hazardous air pollutant (as defined by CAAA, Section 112(b))
H_2S	hydrogen sulfide
I&M	inspection & maintenance
k	kilo (thousand)
1	liter
lb	pound
lbs/day	pounds per day
lbs/hr	pounds per hour
LACT	Lease Automatic Custody Transfer
LPG	liquid petroleum gas
M	thousand
MACT	
-	Maximum Achievable Control Technology
MM	million
MW	molecular weight
NEI	net emissions increase
NG	natural gas
NSPS	New Source Performance Standards
O_2	oxygen
OCS	outer continental shelf
PM	particulate matter
PM_{10}	particulate matter less than 10 µm in size
PM _{2.5}	particulate matter less than 2.5 μ m in size
ppm (vd or w)	parts per million (volume dry or weight)
psia	pounds per square inch absolute
psig	pounds per square inch gauge
PRD	pressure relief device
РТО	Permit to Operate
RACT	Reasonably Available Control Technology
ROC	reactive organic compounds, same as "VOC" as used in this permit
RVP	Reid vapor pressure
scf	standard cubic foot
scfd (or scfm)	standard cubic feet per day (or per minute)
SIP	
	State Implementation Plan standard temperature ($(0^{\circ}E)$ and pressure ($(20.02 \text{ inches of mercury})$)
STP	standard temperature (60°F) and pressure (29.92 inches of mercury)
THC	Total hydrocarbons
tpy, TPY	tons per year
TVP	true vapor pressure
USEPA	United States Environmental Protection Agency
VE	visible emissions
VRS	vapor recovery system

1.0 Introduction

1.1 Purpose

<u>General</u>: The Santa Barbara County Air Pollution Control District (District) is responsible for implementing all applicable federal, state and local air pollution requirements which affect any stationary source of air pollution in Santa Barbara County. The federal requirements include regulations listed in the Code of Federal Regulations: 40 CFR Parts 50, 51, 52, 55, 61, 63, 68, 70 and 82. The State regulations may be found in the California Health & Safety Code, Division 26, Section 39000 et seq. The applicable local regulations can be found in the District's Rules and Regulations. This is a combined permitting action that covers both the Federal Part 70 permit (renewal of *Part 70 Operating Permit 8240*) as well as the State Operating Permit (reevaluation of *Permit to Operate 8240*).

Santa Barbara County is designated as a non-attainment area for the state ozone and PM_{10} ambient air quality standard.

<u>Part 70 Permitting</u>: The initial Part 70 permit for this facility was issued on May 22, 1999 in accordance with the requirements of the District's Part 70 operating permit program. This permit is the eleventh renewal of the Part 70 permit, and may include additional applicable requirements and associated compliance assurance conditions. This is Part II of a two-part permit and consists of facility modifications permitted under PTO 12084 (*Diatomite Project*) at the Newlove lease. The Diatomite Project is a steam enhanced oil recovery project located within the Newlove Lease in the Orcutt Hill production field.

The Newlove Lease is a part of the Pacific Coast Energy Company - Orcutt Hill Stationary Source, which is a major source for VOC¹, NO_X and CO. Conditions listed in this permit are based on federal, state or local rules and requirements. Sections 9.A, 9.B and 9.C of this permit are enforceable by the District, the USEPA and the public since these sections are federallyenforceable under Part 70. Where any reference contained in Sections 9.A, 9.B or 9.C refers to any other part of this permit, that part of the permit referred to is federally-enforceable. Conditions listed in Section 9.D are "District-only" enforceable.

Pursuant to the stated aims of Title V of the CAAA of 1990 (i.e., the Part 70 operating permit program), this Part 70 permit renewal has been designed to meet two objectives. First, compliance with all conditions in this permit would ensure compliance with all federally-enforceable requirements for the facility. Second, the permit would be a comprehensive document to be used as a reference by the permittee, the regulatory agencies and the public to assess compliance.

This reevaluation incorporates greenhouse gas emission calculations for the stationary source. On January 20, 2011, the District revised Rule 1301 to include greenhouse gases (GHGs) that are "subject to regulation" in the definition of "Regulated Air Pollutants". District Part 70 operating permits incorporate the revised definition.

¹ VOC as defined in Regulation XIII has the same meaning as reactive organic compounds as defined in Rule 102. The term ROC shall be used throughout the remainder of this document, but where used in the context of the Part 70 regulation, the reader shall interpret the term as VOC.

1.2 Facility Overview

1.2.1 <u>General Overview</u>: The Newlove Lease, located approximately 2.5 miles south of the city of Orcutt, was previously owned and operated for many years by Unocal. Several transfers of ownership/operator have since taken place and are listed below. The most recent change was a name change only from Breitburn Energy to Pacific Coast Energy Company (PCEC) which occurred in December 2011.

Date of Transfer	New Owner	New Operator
April 9, 1996	Nuevo Energy Company	Torch Operating Company
February 27, 2001	Nuevo Energy Company	Nuevo Energy Company
September 30, 2003	ERG Operating Company	ERG Operating Company
November 5, 2004	BreitBurn Energy	BreitBurn Energy
December 1, 2011	Pacific Coast Energy	Pacific Coast Energy

For District regulatory purposes, the facility is located in the Northern Zone of Santa Barbara County². Figure 1.1 shows the relative location of the facility within the county.

² District Rule 102, Definition: "Northern Zone"

PACIFIC COAST ENERGY- ORCUTT HILL and CASMALIA OIL FIELDS STATIONARY SOURCE

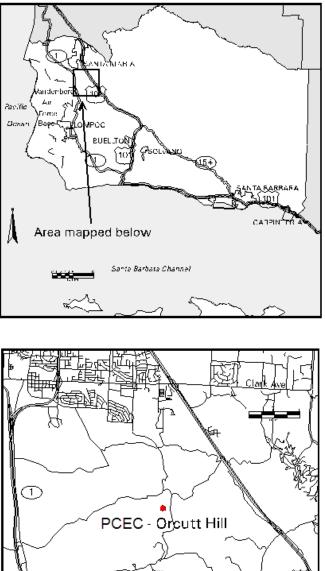
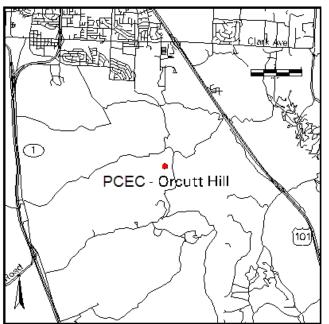



Figure 1.1 Location Map for the Newlove Lease

The Pacific Coast Energy Company - Orcutt Hill and Casmalia Oil Fields Stationary Source (SSID 2667), which was originally developed in the 1920s by Union Oil Company, consists of the facilities listed below. PCEC purchased the Careaga lease in May 2022 and the N.R. Bonetti, Escolle, Escolle (Amrich), Arellanes, Morganti, Casmalia ICEs, Musico and Righetti Leases in February 2024, thereby becoming incorporated into the original PCEC Orcutt Hill Stationary Source which was renamed the Pacific Coast Energy Company - Orcutt Hill and Casmalia Oil Fields Stationary Source.

California Coast Lease	(FID 3206)
• Fox Lease	(FID 3313)
Dome Lease	(FID 3314)
• Folsom Lease	(FID 3316)
Graciosa Lease	(FID 3318)
Hartnell Lease	(FID 3319)
Hobbs Lease	(FID 3320)
Newlove Lease	(FID 3321)
Pinal Lease	(FID 3322)
Rice Ranch Lease	(FID 3323)
Squires Lease	(FID 3324)
Getty-Hobbs Lease	(FID 3495)
Orcutt Hill Compressor Plant	(FID 4104)
Orcutt Hill Internal Combustion Engines	(FID 4214)
Orcutt Hill Steam Generators	(FID 10482)
• Orcutt Hill Field (MVFF)	(FID 1904)
Careaga Lease	(FID 1517)
Casmalia ICEs	(FID 4216)
• N.R. Bonetti Lease	(FID 4501)
• Escolle Lease (Amrich)	(FID 11593)
• Escolle Lease	(FID 3315)
Arellanes Lease	(FID 3212)
Morganti Lease	(FID 3303)
Musico Lease	(FID 3304)
Righetti Lease	(FID 3948)

The Diatomite project is located within the Newlove Lease and consists of the following oil and gas production systems:

- Oil & gas wells
- Oil/water/gas separation systems
- Oil and water storage systems
- Vapor recovery systems
- Oil shipping systems
- Wastewater injection systems
- Gas gathering and shipping systems
- Gas fired steam generators
- Fugitive emission components in gas/liquid hydrocarbon service

The Diatomite Project was permitted under PTO 12084 for the purpose of producing wells by steam injection. Oil, water and gas are produced from 97 wells utilizing steam injection to

enhance the oil recovery process. Well steaming consists of injecting steam into several wells in each pod for three to five days. The steam then "soaks" in the wells for one to two days before the wells are returned to production. While the first wells are soaking, steam injection is moved to the next set of wells in the pod. This process continues until all wells in the pod have been steamed, after which the cycle is repeated. A water polishing system provides water for the steam generators.

Crude oil production from the Diatomite Project is sent to a tank farm, metered at a LACT unit and shipped from the lease via a pipeline. Produced gas is comingled with the Orcutt field gas, is compressed and distributed back to the field by the Orcutt Compressor Plant for fuel gas purposes.

1.2.2 <u>Facility New Source Review Overview</u>: Table 1.1 provides a summary of the New Source Review history of the Diatomite portion of the Newlove Lease.

Permit Number	Issuance Date	Permitted Modification
ATC 12084	06/05/07	Diatomite project including 3 steam generators, a production tank, a tank farm for water polishing and
ATC 12084-03	11/05/2010	ancillary oil and gas processing equipment. Modify Phase 2 of Diatomite Project.
ATC 13141	08/26/2009	Permit 4 Diatomite Project Wells.
ATC 13230	07/29/2011	Steam Injection Pilot Project.
ATC 13759	05/11/2012	Replace Sulfa-check System.
ATC 13986	03/24/2016	Install Diatomite Project

Table 1.1New Source Review Overview

1.3 Emission Sources

Emission sources at the Diatomite Project equipment consist of oil and gas wells, oil/water/gas separation equipment, steam generators, tanks, sumps and fugitive emission components, such as process-line valves and flanges. Section 4 of the permit provides the District's engineering analysis of these emission sources. Section 5 of the permit describes the allowable emissions from each permitted emissions unit and also lists the potential emissions from non-permitted emission units.

The emission sources for Diatomite operations include:

Ninety-seven (97) oil and gas wells

- Three (3) 62.5 MMBtu/hr steam generators(plus one additional steam generator permitted under FID 10482)
- Two (2) wash tanks
- Two (2) crude oil storage tanks
- One (1) Drain tank
- One (1) waste water tank
- Two (2) sand Bins
- Fugitive emission components in gas/liquid hydrocarbon service

A list of all permitted equipment is provided in Section 10.4.

1.4 Emission Control Overview

Emission controls utilized on the Diatomite Project equipment include:

- → A vapor recovery/gas collection (VRGC) system to collect reactive organic vapors from the gas/liquid separators and the tanks. A 95-percent control efficiency is applied for the use of vapor recovery. The vapors are used as make-up gas to the tanks.
- → Three steam generators equipped with ultra low-NO_x burners, automatic excess O₂ trim controllers and exhaust gas recirculation. Steam generator emissions (at standard conditions and corrected to 3% O₂) are limited to 7 (SG-400) or 9 ppmv (SG-100 and 300) of NO_x, 8.5 ppmv of ROC and 27 ppmv of CO. The NO_x and ROC limits represent BACT. The CO limit is based on PCEC's application.
- → The steamed wells are not "blown down" to atmosphere. The produced steam, gas and oil are routed to the production gathering system.
- → Low emitting design components to reduce emission of fugitive hydrocarbons from the Diatomite project equipment. An enhanced fugitive hydrocarbon inspection and maintenance program (monthly monitoring with BACT level leak detection and repair triggers). This is expected to control emissions in excess of District Rule 331 requirements and to maintain fugitive ROC emission limits under permitted limits (based on District Policy and Procedure 6100.072.1998). All fugitive emissions are calculated using the correlation equation methodology.
- → A SulfaTreat System operated at the primary facility serves as the primary emission controls for the H₂S concentrations in the Diatomite produced gas. The highest expected H₂S concentration in untreated production gas is 20,000 ppm_v. The maximum anticipated volume of produced gas from the Diatomite project and that which is required to be treated by this system is 1050 Mscfd.
- → The steam generators are required to maintain a minimum combustion section temperature of 1275 ° F and operate at a combustion residence time of no less than 4.88 seconds to provide greater than 90% percent destruction efficiency of produced gas in order to meet Rule 325.E. requirements. A destruction efficiency of greater than 99% at this minimum temperature has been demonstrated.

1.5 Offsets/Emission Reduction Credit Overview

The Pacific Coast Energy Company - Orcutt Hill Stationary Source triggers offsets for NO_x and ROC emissions. See section 7.3 for details.

1.6 Part 70 Operating Permit Overview

1.6.1 <u>Federally-enforceable Requirements</u>: All federally-enforceable requirements are listed in 40 CFR Part 70.2 (*Definitions*) under "applicable requirements". These include all SIP-approved District Rules, all conditions in the District-issued Authority to Construct permits, and all conditions applicable to major sources under federally promulgated rules and regulations. All these requirements are enforceable by the public under CAAA. (*see Tables 3.1 and 3.2 for a list of federally-enforceable requirements*)

- 1.6.2 Insignificant Emissions Units: Insignificant emission units are defined under District Rule 1301 as any regulated air pollutant emitted from the unit, excluding HAPs, that are less than 2 tons per year based on the unit's potential to emit and any HAP regulated under section 112(g) of the Clean Air Act that does not exceed 0.5 ton per year based on the unit's potential to emit. Insignificant activities must be listed in the Part 70 application with supporting calculations. Applicable requirements may apply to insignificant units.
- 1.6.3 <u>Federal Potential to Emit</u>: The federal potential to emit (PTE) of a stationary source does not include fugitive emissions of any pollutant, unless the source is: (1) subject to a federal NSPS/NESHAP requirement which was in effect as of August 7, 1980, or (2) included in the 29-category source list specified in 40 CFR 70.2. The federal PTE does include all emissions from any insignificant emissions units. None of the equipment at this facility is subject to a federal NSPS/NESHAP requirement, nor is it included in the 29-category list, therefore the federal PTE does not include fugitive emissions. (See Section 5.4 for the federal PTE for this source)
- 1.6.4 <u>Permit Shield</u>: The operator of a major source may be granted a shield: (a) specifically stipulating any federally-enforceable conditions that are no longer applicable to the source and (b) stating the reasons for such non-applicability. The permit shield must be based on a request from the source and its detailed review by the District. Permit shields cannot be indiscriminately granted with respect to all federal requirements. The permittee has not made a request for a permit shield.
- 1.6.5 <u>Alternate Operating Scenarios</u>: A major source may be permitted to operate under different operating scenarios, if appropriate descriptions of such scenarios are included in its Part 70 permit application and if such operations are allowed under federally-enforceable rules. The permittee made no request for permitted alternative operating scenarios.
- 1.6.6 <u>Compliance Certification</u>: Part 70 permit holders must certify compliance with all applicable federally-enforceable requirements including permit conditions. Such certification must accompany each Part 70 permit application; and, be re-submitted annually on the anniversary date of the permit or on a more frequent schedule specified in the permit. A "responsible official" of the owner/operator company whose name and address is listed prominently in the Part 70 permit signs each certification. (*see Section 1.6.9 below*)
- 1.6.7 <u>Permit Reopening</u>: Part 70 permits are re-opened and revised if the source becomes subject to a new rule or new permit conditions are necessary to ensure compliance with existing rules. The permits are also re-opened if they contain a material mistake or the emission limitations or other conditions are based on inaccurate permit application data.
- 1.6.8 <u>Hazardous Air Pollutants (HAPs)</u>: Part 70 permits also regulate emission of HAPs from major sources through the imposition of maximum achievable control technology (MACT), where applicable. The federal PTE for HAP emissions from a source is computed to determine MACT or any other rule applicability.
- 1.6.9 <u>Responsible Official</u>: The designated responsible official and his mailing address is:

Phil Brown Chief Operation Officer Pacific Coast Energy Company 1555 Orcutt Hill Rd. Orcutt, CA 93455

2.0 **Process Description**

2.1 Process Summary

- 2.1.1 <u>Overview</u>: The Diatomite Project wells utilize steam injected into the oil-bearing reservoir to reduce the viscosity of the oil and enhance recoverability. The project consists of three 62.5 MMBtu/hr steam generators, seven well pods, a tank farm, and a water polishing system. The number of wells on each pod varies. There is a total of 97 wells. Two of these wells are previously permitted wells as part of the original Newlove field operations.
- 2.1.2 <u>Gas, Oil, and Water Separation</u>: Produced oil, water and gas are piped to the Diatomite tank battery where it passes through two three-phase separators and one two-phase separator. Liquids from the separators are sent to the wash tanks where oil and water are separated. Oil is piped to the crude tanks and the water is sent to the wastewater tanks. The storage tanks are connected to a vapor recovery system. A 95-percent control efficiency is applied for the use of vapor recovery. Vapors are directed back to the storage tanks as make-up gas.
- 2.1.4 <u>Oil and Gas Metering and Shipping</u>: Oil from the crude storage tank is metered through a LACT metering system and is shipped from the lease via pipeline.
- 2.1.5 <u>Wastewater Disposal</u>: The water separated in the wash tank is sent to the wastewater tanks. The wastewater is then reinjected into the producing formation.

2.2 Support Systems

There are no additional support systems associated with the Diatomite equipment.

2.3 Maintenance/Degreasing Activities

- 2.3.1 <u>Paints and Coatings</u>: Intermittent surface coating operations are conducted throughout the facility for occasional structural and equipment maintenance needs, including architectural coating. Normally only touch-up and equipment labeling or tagging is performed. All architectural coatings used are in compliance with District Rule 323, as verified through the rule-required recordkeeping.
- 2.3.2 <u>Solvent Usage</u>: Solvents not used for surface coating thinning may be used for daily operations. Usage includes cold solvent degreasing and wipe cleaning with rags.

2.4 Planned Process Turnarounds

Maintenance of critical components is carried out according to the requirements of Rule 331 (*Fugitive Emissions Inspection and Maintenance*) during turnarounds. The permittee has not listed any emissions from planned process turnarounds that should be permitted.

2.5 Other Processes

2.5.1 <u>Unplanned Activities/Emissions:</u> The permittee does not anticipate or foresee any circumstances that would require special equipment use and result in excess emissions.

2.6 Detailed Process Equipment Listing

Refer to Attachment 10.4 for a complete listing of all permitted equipment.

3.0 Regulatory Review

This Section identifies each federal, state and local rule and regulation.

3.1 Rule Exemptions Claimed

- District Rule 202 (*Exemptions to Rule 201*): The following exemptions apply to this facility. An exemption from permit, however, does not necessarily grant relief from any applicable prohibitory rule.
 - <u>Section D.6 De Minimis Exemptions</u>: This section requires PCEC to maintain a record of each de minimis change, which includes emission calculations demonstrating that each physical change meets the criteria listed in the Rule. This exemption applies to a project in the broadest sense. Such records shall be made available to the District upon request. As of June 2020, the de minimis total at the Pacific Coast Energy Company Orcutt Hill Stationary Source is 20.94 lbs ROC/day. This total does not include the previously claimed emissions from the Sx Sands project (ATC 13140).
 - <u>Section D.8 Routine Repair and Maintenance</u>: A permit shall not be required for routine repair or maintenance of permitted equipment, not involving structural changes.
 - <u>Section D.14 Architectural Coatings</u>: Application of architectural coating in the repair and maintenance of a stationary structure is exempt from permit requirements.
 - <u>Section U.2 Degreasing Equipment</u>: Single pieces of degreasing equipment, which use unheated solvent, and which: a) have a liquid surface area of less than 1.0 square foot unless the aggregate liquid surface area of all degreasers at a stationary source, covered by this exemption is greater than 10 square feet; and b) use only organic solvents with an initial boiling point of 302^o F or greater; or c) use materials with a volatile organic compound content of two-percent or less by weight as determined by EPA Method 24.
 - <u>Section U.3 Wipe Cleaning</u>: Equipment used in wipe cleaning operations provided that the solvents used do not exceed 55 gallons per year. The permittee shall maintain records of the amount of solvents used for each calendar year. These records shall be kept for a minimum of 3 years and be made available to the District on request.

In addition, the following two Rule 202 permit exemptions may apply:

- <u>Section F.1.c Internal Combustion Engines</u>: Engines used to propel vehicles, as defined in Section 670 of the California Vehicle Code, but not including any engine mounted on such vehicles that would otherwise require a permit under the provisions of District Rules and Regulations.
- <u>Section F.2 Portable Internal Combustion Engines</u>: Portable ICEs eligible for statewide registration pursuant to Title 13, Section 2450 *et seq.*, and not integral to the stationary source operations.
- District Rule 321 (*Solvent Cleaning Operations*): Section D.4 exempts solvent wipe cleaning operations from the requirements of this rule.
- District Rule 331 (*Fugitive Emission Inspection and Maintenance*): The following exemptions were applied for in the permittee's Inspection and Maintenance Plan and approved by the District:

- Section B.2.b for components buried below the ground.
- Section B.2.c for stainless steel tube fittings.
- District Rule 343 (*Petroleum Storage Tank Degassing*): A tank degassing plan for the Diatomite Project petroleum storage and processing tanks is not required since TVP sample results were below the applicability threshold of 2.6 psia. Future sampling will ensure that this rule exemption continues to apply to the Diatomite Project storage tanks.

3.2 Compliance with Applicable Federal Rules and Regulations

- 3.2.1 <u>40 CFR Parts 51/52 {*New Source Review (Nonattainment Area Review and Prevention of Significant Deterioration)*}</u>: The Newlove Lease was constructed and permitted prior to the applicability of these regulations. All modifications are subject to the District's New Source Review regulation. Compliance with the regulation assures compliance with 40 CFR 51/52.
- 3.2.2 <u>40 CFR Part 60 {*New Source Performance Standards*}</u>: The crude oil storage tanks installed for the Diatomite Project are not subject because they have a design volume less than 1,589.874 m³ (10,000 bbls) and are located prior to custody transfer.

<u>40 CFR Part 60:</u> Subpart Dc applies to new steam generators and boilers rated from 10.000 to 100.000 MMBtu/hr. The SO₂ limits of the Subpart only apply to units that combust coal or oil. The PM limits of the subpart only apply to units that combust coal, wood, or oil. The steam generators are fired on natural gas only, therefore they are not subject to any emission limits of this Subpart. The owner or operator is required to maintain fuel use records

- 3.2.3 <u>40 CFR Part 61 {*NESHAP*</u>: This facility is not currently subject to the provisions of this Subpart.
- 3.2.4 <u>40 CFR Part 63 {*MACT*}</u>: On June 17, 1999, EPA promulgated Subpart HH, National Emission Standards for Hazardous Air Pollutants (NESHAPS) for Oil and Natural Gas Production and Natural Gas Transmission and Storage. This facility currently is not subject to the provisions of this Subpart. Information was submitted on March 26, 2002 indicating its source is exempt from the requirements of MACT because they demonstrated that this facility is not a "major source" as defined in 40 CFR 63.761. The permittee verified that this lease does not store crude oil with an API gravity of 40° or greater, and does not have a glycol reboiler. On March 27, 2002 the District issued a letter agreeing with this exemption.

The District has verified that the Diatomite Project does not meet the MACT definition of a natural gas processing plant, and does not contain a glycol dehydration unit or storage vessel with potential for flash emissions. (Recent API gravity results indicated no flash potential based on sampling at two tanks: Tank T-350 on April 11, 2008: 13.3 API; at Tank T-340 on April 23, 2008: 14.6 API). Therefore, the Diatomite Project is not an affected source per 40CFR63.760 (b), and the requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPS) for Oil and Natural Gas Production and Natural Gas Transmission and Storage (promulgated June 17, 1999) do not apply.

3.2.5 <u>40 CFR Part 64 {Compliance Assurance Monitoring}</u>: This rule became effective on April 22, 1998. This rule affects emission units at the source subject to a federally-enforceable emission limit or standard that uses a control device to comply with the emission standard, and either precontrol or post-control emissions exceed the Part 70 source emission thresholds. Compliance with this rule was evaluated and it was determined that no emission units at this facility are

currently subject to CAM. All emission units at this facility have a pre-control emission potential less than 100 tons/year.

3.2.6 <u>40 CFR Part 70 {*Operating Permits*}</u>: This Subpart is applicable to the Newlove Lease. Table 3.1 lists the federally-enforceable District promulgated rules that are "generic" and apply to the Newlove Lease. Table 3.2 lists the federally-enforceable District promulgated rules that are "unit-specific" that apply to the Newlove Lease. These tables are based on data available from the District's administrative files and from the permittee's Part 70 Operating Permit renewal application. Table 3.4 includes the adoption dates of these rules.

In its Part 70 permit application, the permittee certified compliance with all existing District rules and permit conditions. This certification is also required of the permittee semi-annually.

3.3 Compliance with Applicable State Rules and Regulations

- 3.3.1 <u>Division 26. Air Resources {California Health & Safety Code</u>}: The administrative provisions of the Health & Safety Code apply to this facility and will be enforced by the District. These provisions are District-enforceable only.
- 3.3.2 <u>California Administrative Code Title 17</u>: These sections specify the standards by which abrasive blasting activities are governed throughout the State. All abrasive blasting activities at the Newlove Lease are required to conform to these standards. Compliance will be assessed through onsite inspections. These standards are District-enforceable only. However, CAC Title 17 does not preempt enforcement of any SIP-approved rule that may be applicable to abrasive blasting activities.
- 3.3.3 <u>Greenhouse Gas Emission Standards for Crude Oil and Natural Gas Facilities (CCR Title 17, Section 95665 et. Seq.)</u>: On October 1, 2017, the California Air Resources Board (CARB) finalized this regulation, which establishes greenhouse gas emission standards for onshore and offshore crude oil and natural gas production facilities. On June 22, 2023, the CARB Board adopted amendments to the regulation, which went into effect on April 1, 2024. This facility is subject to the provisions of this regulation. The separators and tanks at this facility satisfy the requirements of the CARB regulation through the use of a vapor collection system. This facility is exempt from the leak detection and repair (LDAR) requirements of the CARB regulation per Section 95669(c)(1), which exempts components, including components found on tanks, separators, wells and pressure vessels, that are subject to District Rule 331 LDAR requirements prior to January 1, 2018. This facility does not utilize circulation tanks for well stimulation treatments, reciprocating or centrifugal natural gas compressors, natural gas powered pneumatic devices or pumps, natural gas only wells, or well casing vents, and is therefore not subject to the CARB regulation standards and requirements for these equipment and processes.

3.4 Compliance with Applicable Local Rules and Regulations

- 3.4.1 <u>Applicability Tables</u>: Tables 3.1 and 3.2 list the federally enforceable District rules that apply to the facility. Table 3.3 lists the non-federally-enforceable District rules that apply to the facility. Table 3.4 lists the adoption date of all rules that apply to the facility.
- 3.4.2 <u>Rules Requiring Further Discussion</u>: This section provides a more detailed discussion regarding the applicability and compliance of certain rules. The following is a rule-by-rule evaluation of compliance for this facility:

<u>Rule 201 - Permits Required</u>: This rule applies to any person who builds, erects, alters, replaces, operates or uses any article, machine, equipment, or other contrivance that may cause the issuance of air contaminants. The equipment included in this permit is listed in Attachment 10.4. An Authority to Construct is required to return any de-permitted equipment to service and may be subject to New Source Review.

<u>*Rule 210 - Fees*</u>: Pursuant to Rule 201.G, District permits are reevaluated every three years. This includes the re-issuance of the underlying permit to operate. Also included are the PTO fees. The fees for this facility are based on District Rule 210, Fee Schedule A; however Part 70 specific costs are based on cost reimbursement provisions (Rule 210.C). Attachment 10.6 presents the fee calculations for the reevaluated permit.

<u>*Rule 301 - Circumvention*</u>: This rule prohibits the concealment of any activity that would otherwise constitute a violation of Division 26 (Air Resources) of the California H&SC and District rules and regulations. To the best of the District's knowledge, the permittee is operating in compliance with this rule.

<u>Rule 302 - Visible Emissions</u>: This rule prohibits the discharge from any single source any air contaminants for which a period or periods aggregating more than three minutes in any one hour which is as dark or darker in shade than a reading of 1 on the Ringlemann Chart or of such opacity to obscure an observer's view to a degree equal to or greater than a reading of 1 on the Ringlemann Chart. Sources subject to this rule include all internal combustion engines at the facility. Improperly maintained diesel engines have the potential to violate this rule. Compliance will be assured by requiring all engines to be maintained according to manufacturer maintenance schedules and by requiring visible emissions inspections of the diesel engines.

<u>*Rule 303 (Nuisance)*</u>: Rule 303 prohibits any source from discharging such quantities of air contaminants or other material in violation of Section 41700 of the Health and Safety Code which cause injury, detriment, nuisance or annoyance to any considerable number of persons or to the public or which endanger the comfort, repose, health or safety or any such persons or the public or which cause or have a natural tendency to cause injury or damage to business or property. Compliance with this rule is assessed through the District's enforcement staff's complaint response program. Based on the source's location, the potential for public nuisance is small.

<u>Rule 304 (Particulate Matter - Northern Zone)</u>: A person shall not discharge into the atmosphere from any source particulate matter in excess of 0.3 grain per cubic foot of gas at standard conditions. It is unlikely that gas fired engines will exceed these particulate matter standards.

<u>*Rule 309 - Specific Contaminants*</u>: Under Section "A", no source may discharge sulfur compounds and combustion contaminants (particulate matter) in excess of 0.2 percent as SO₂ (by volume) and 0.3 gr/scf (at 12% CO₂) respectively. It is unlikely that gas fired engines will exceed these standards.

<u>*Rule 310 - Odorous Organic Compounds*</u>: This rule prohibits the discharge of H_2S and organic sulfides that result in a ground level impact beyond the property boundary in excess of either 0.06 ppmv averaged over 3 minutes and 0.03 ppmv averaged over 1 hour. No measured data exists to confirm compliance with this rule.

<u>*Rule 311 - Sulfur Content of Fuels*</u>: This rule limits the sulfur content of fuels combusted on the Newlove Lease to 0.5 percent (by weight) for liquids fuels and 50 gr/100 scf (calculated as H_2S)

{or 796 ppmvd} for gaseous fuels. All fuel burning equipment on the lease is expected to be in compliance with the fuel limit as determined by required fuel analysis documentation.

<u>Rule 317 - Organic Solvents</u>: This rule sets specific prohibitions against the discharge of emissions of both photochemically and non-photochemically reactive organic solvents (40 lb/day and 3,000 lb/day respectively). Solvents may be used on the lease during normal operations for degreasing by wipe cleaning and for use in paints and coatings in maintenance operations. There is the potential to exceed the limits under Section B.2 during significant surface coating activities. The permittee will be required to maintain records to ensure compliance with this rule.

<u>Rule 321 - Solvent Cleaning Operations</u>: This rule, revised June 2012, fulfills the commitment in the 2001 and 2004 Clean Air Plans to implement requirements for solvent cleaning machines and solvent cleaning. The revised rule contains solvent reactive organic compounds (ROCs) content limits, revised requirements for solvent cleaning machines, and sanctioned solvent cleaning devices and methods. These proposed provisions apply to solvent cleaning machines and wipe cleaning.

<u>*Rule 322 - Metal Surface Coating Thinner and Reducer*</u>: This rule prohibits the use of photochemically reactive solvents for use as thinners or reducers in metal surface coatings. The permittee will be required to maintain records during maintenance operations to ensure compliance with this rule.

<u>Rule 323.1 (Architectural Coatings)</u>: This rule sets the standards for any architectural coating that is supplied, sold, offered for sale, or manufactured for use within the District.

<u>Rule 324 - Disposal and Evaporation of Solvents</u>: This rule prohibits any source from disposing more than one and a half gallons of any photochemically reactive solvent per day by means that will allow the evaporation of the solvent into the atmosphere. The permittee will be required to maintain records to ensure compliance with this rule.

<u>Rule 325 - Crude Oil Production and Separation</u>: This rule, adopted January 25, 1994, applies to equipment used in the production, gathering, storage, processing and separation of crude oil and gas prior to custody transfer. The primary requirements of this rule are under Sections D and E. Section D requires the use of vapor recovery systems on all tanks and vessels, including wastewater tanks, oil/water separators and sumps. Section E requires that all produced gas be controlled at all times, except for wells undergoing routine maintenance. All of the tanks associated with the Diatomite Project are connected to the vapor recovery system. Compliance with Section E is met by directing all produced gas to a sales compressor, injection well or to a flare relief system.

<u>Rule 326 - Storage of Reactive Organic Liquids</u>: This rule applies to equipment used to store reactive organic compound liquids with a vapor pressure greater than 0.5 psia. The tanks on the Newlove Lease are subject to Rule 325, and are therefore are not subject to this rule per Section B.1.c.

<u>Rule 330 - Surface Coating of Metal Parts and Products</u>: This rule sets standards for many types of coatings applied to metal parts and products. In addition to the ROC standards, this rule sets operating standards for application of the coatings, labeling and recordkeeping. Compliance with this rule will be demonstrated through inspections and recordkeeping.

<u>Rule 331 - Fugitive Emissions Inspection and Maintenance</u>: This rule applies to components in liquid and gaseous hydrocarbon service at oil and gas production fields. Ongoing compliance with the many provisions of this rule will be assessed via inspection by District personnel using an organic vapor analyzer and through analysis of operator records. The Newlove Lease does not perform any routine venting of hydrocarbons to the atmosphere. All gases routinely vented are directed to the vapor recovery system.

<u>Rule 342 - Control of Oxides of Nitrogen from Boilers, Steam Generators and Process Heaters</u>: This rule applies to boilers, steam generators and process heaters with rated heat inputs greater than or equal to 5 million Btu per hour used in all industrial, institutional and commercial operations. Compliance shall be based on source testing and site inspections. The steam generator is subject to this rule.

<u>Rule 343 - Petroleum Storage Tank Degassing</u>: This rule applies to the degassing of any aboveground tank, reservoir or other container of more than 40,000 gallons capacity containing any organic liquid with a vapor pressure greater than 2.6 psia or between 20,000 gallons and 40,000 gallons capacity containing any organic liquid with a vapor pressure greater than 3.9 psia. A degassing Plan is not required for the Diatomite tanks.

<u>Rule 344 - Sumps, Pits and Well Cellars</u>: Rule 344 requires an inspection and maintenance plan for well cellars. The permittee has instituted a program to monitor well cellars and pump them out if the thickness of the oil/petroleum products exceeds 2 inches or the cellar is over 50-percent full of any liquid. Compliance is determined through required recordkeeping and District inspection. There are no sumps, pits or well cellars associated with the Diatomite Project.

<u>Rule 352 - Natural Gas-Fired Fan-Type Central Furnaces and Small Water Heaters</u>: This rule applies to new water heaters rated less than 75,000 Btu/hr and new fan-type central furnaces. It requires the certification of newly installed units.

<u>*Rule 353 - Adhesives and Sealants*</u>: This rule applies to the use of adhesives, adhesive bonding primers, adhesive primers, sealants, sealant primers, or any other primers. Compliance shall be based on site inspections.

<u>Rule 505 - Breakdown Conditions</u>: This rule describes the procedures that the permittee must follow when a breakdown condition occurs to any emissions unit associated with the Newlove Lease. A breakdown condition is defined as an unforeseeable failure or malfunction of (1) any air pollution control equipment or related operating equipment which causes a violation of an emission limitation or restriction prescribed in the District Rules and Regulations, or by State law, or (2) any in-stack continuous monitoring equipment, provided such failure or malfunction:

- a. Is not the result of neglect or disregard of any air pollution control law or rule or regulation;
- b. Is not the result of an intentional or negligent act or omission on the part of the owner or operator;
- c. Is not the result of improper maintenance;
- d. Does not constitute a nuisance as defined in Section 41700 of the Health and Safety Code;
- e. Is not a recurrent breakdown of the same equipment.

<u>Rule 810 - Federal Prevention of Significant Deterioration</u>: This rule, revised June 20, 2013, incorporates the federal Prevention of Significant Deterioration rule requirements into the District's rules and regulations. Future projects at the facility will be evaluated to determine whether they constitute a new major stationary source or a major modification.

3.5 Compliance History

This section contains a summary of the compliance history for this facility and was obtained from documentation contained in the District's administrative file.

- 3.5.1 <u>Facility Inspections</u>. Routine facility inspections were conducted on September 14, 2021, June 8, 2023, and March 7, 2024 since issuance of the previous permit renewal. The reports for these inspections were reviewed as part of the current permit renewal process.
- 3.5.2 <u>Violations</u>: See Section 3.5.2 of Part 1 for a list of violations issued to the Newlove Lease since the last permit renewal.
- 3.5.3 <u>Variances and Significant Historical Hearing Board Actions</u>: Since the last permit renewal was issued, the facility has been granted the following variances:
 - 2024-01-I: Interim variance granted for relief from the source testing requirements for SG 100 until the repairs can be made and source testing can be conducted.

Generic Requirements	Affected Emission Units	Basis for Applicability						
<u>RULE 101</u> : Compliance by Existing Installations	All emission units	Emission of pollutants						
<u>RULE 102</u> : Definitions	All emission units	Emission of pollutants						
<u>RULE 103</u> : Severability	All emission units	Emission of pollutants						
RULE 201: Permits Required	All emission units	Emission of pollutants						
<u>RULE 202</u> : Exemptions to Rule 201	Applicable emission units, as listed in form 1302-H of the Part 70 application.	Insignificant activities/emissions, per size/rating/function						
<u>RULE 203</u> : Transfer	All emission units	Change of ownership						
<u>RULE 204</u> : Applications	All emission units	Addition of new equipment of modification to existing equipment.						
<u>RULE 205</u> : Standards for Granting Permits	All emission units	Emission of pollutants						
<u>RULE 206</u> : Conditional Approval of Authority to Construct or Permit to Operate	All emission units	Applicability of relevant Rules						
<u>RULE 207</u> : Denial of Applications	All emission units	Applicability of relevant Rules						
<u>RULE 208</u> : Action on Applications - Time Limits	All emission units. Not applicable to Part 70 permit applications.	Addition of new equipment of modification to existing equipment.						
<u>RULE 212</u> : Emission Statements	All emission units	Administrative						
RULE 301: Circumvention	All emission units	Any pollutant emission						
RULE 302 : Visible Emissions	All emission units	Particulate matter emissions						
<u>RULE 303</u> : Nuisance	All emission units	Emissions that can injure, damage or offend.						
<u>RULE 304</u> : Particulate matter – Northern Zone	Each PM Source	Emission of PM in effluent gas						
<u>RULE 309:</u> Specific Contaminants	All emission units	Combustion contaminant emission						
<u>RULE 311:</u> Sulfur Content of Fuel	All combustion units	Use of fuel containing sulfur						

Table 3.1 - Generic Federally-Enforceable District Rules

Generic Requirements	Affected Emission Units	Basis for Applicability				
<u>RULE 317</u> : Organic Solvents	Emission units using solvents	Solvent used in process operations.				
<u>RULE 321</u> : Solvent Cleaning Operations	Emission units using solvents	Solvent used in process operations.				
<u>RULE 322</u> : Metal Surface Coating Thinner and Reducer	Emission units using solvents	Solvent used in process operations.				
<u>RULE 323.I</u> : Architectural Coatings	Paints used in maintenance and surface coating activities	Application of architectural coatings.				
<u>RULE 324</u> : Disposal and Evaporation of Solvents	Emission units using solvents	Solvent used in process operations.				
RULE 353: Adhesives and Sealants	Emission units using adhesives and solvents.	Adhesives and sealants used in process operations.				
<u>RULE 505.A, B1, D</u> : Breakdown Conditions	All emission units	Breakdowns where permit limits are exceeded.				
<u>RULE 603</u> : Emergency Episode Plans	Stationary sources with PTE greater than 100 tpy	Pacific Coast Orcutt Hill is a major source.				
<u>RULE 901</u> : New Source Performance Standards (NSPS)	All emission units	Applicability standards are specified in each NSPS.				
<u>RULE 1001</u> : National Emission Standards for Hazardous Air Pollutants (NESHAPS)	All emission units	Applicability standards are specified in each NESHAP				
<u>REGULATION VIII</u> : New Source Review	All emission units	Addition of new equipment of modification to existing equipment.				
REGULATION XIII (RULES 1301- 1305): Part 70 Operating Permits	All emission units	Pacific Coast Orcutt Hill is a major source.				

Unit-Specific Requirements	Affected Emission Units	Basis for Applicability
<u>RULE 325</u> : Crude Oil Production and Separation	Wash tank, crude storage tanks, wastewater tanks	Pre-custody transfer oil service tanks with capacities exceeding exemption limits.
<u>RULE 331</u> : Fugitive Emissions Inspection & Maintenance	All components (valves, flanges, seals, compressors and pumps) used to handle oil and gas:	Components emit fugitive ROCs.
<u>RULE 342:</u> Control of Oxides of Nitrogen from Boilers, Steam Generators and Process Heaters	Steam Generator	Steam Generator rated at greater than 5.000 million Btu per hour.
<u>RULE 343</u> : Petroleum Storage Tank Degassing	Wash tank, crude storage tanks, wastewater tanks	Tanks used in storage of organic liquids with vapor pressure > 2.6 psia.
<u>RULE 344</u> : Petroleum Pits, Sumps and Cellars	Well cellars, sump, wastewater pits	Compliance with this rule provides a 70% reduction in well cellar ROC emissions.
<u>RULE 360:</u> Boilers, Water Heaters, and Process Heaters (0.075 - 2 MMBtu/hr)	Any new small boiler installed at the facility.	New units rated from 75,000 Btu/hr to 2.000 MMBtu/hr.

Table 3.2 - Unit-Specific Federally-Enforceable District Rules

Table 3.3 - Non-Federally-Enforceable District Rules

Requirement	Affected Emission Units	Basis for Applicability				
<u>RULE 210</u> : Fees	All emission units	Administrative				
<u>RULE 310:</u> Odorous Org. Sulfides	All emission units	Emission of organic sulfides				
<u>RULE 352</u> : Natural Gas-Fired Fan-Type Central Furnaces and Small Water Heaters	New water heaters and furnaces	Upon installation				
RULES 501-504: Variance Rules	All emission units	Administrative				
<u>RULE 505.B2, B3, C, E, F, G</u> : Breakdown Conditions	All emission units	Breakdowns where permit limits are exceeded or rule requirements are not complied with.				
<u>RULES 506-519</u> : Variance Rules	All emission units	Administrative				

Rule No.	Rule Name	Adoption Date
Rule 101	Compliance by Existing Installations: Conflicts	June 1981
Rule 102	Definitions	August 25, 2016
Rule 103	Severability	October 23, 1978
Rule 201	Permits Required	June 21, 2012
Rule 202	Exemptions to Rule 201	August 25, 2016
Rule 203	Transfer	April 17, 1997
Rule 204	Applications	April 17, 1997
Rule 205	Standards for Granting Permits	April 17, 1997
Rule 206	Conditional Approval of Authority to Construct or Permit to Operate	October 15, 1991
Rule 208	Action on Applications - Time Limits	April 17, 1997
Rule 212	Emission Statements	October 20, 1992
Rule 301	Circumvention	October 23, 1978
Rule 302	Visible Emissions	June 1981
Rule 303	Nuisance	June 1981
Rule 304	Particulate Matter – Northern Zone	October 23, 1978
Rule 309	Specific Contaminants	October 23, 1978
Rule 310	Odorous Organic Sulfides	October 23, 1978
Rule 311	Sulfur Content of Fuels	October 23, 1978
Rule 317	Organic Solvents	October 23, 1978
Rule 321	Solvent Cleaning Operations	June 12, 2012
Rule 322	Metal Surface Coating Thinner and Reducer	October 23, 1978
Rule 323.I	Architectural Coatings	June 19, 2014
Rule 324	Disposal and Evaporation of Solvents	October 23, 1978
Rule 325	Crude Oil Production and Separation	July 19, 2001
Rule 326	Storage of Reactive Organic Compound Liquids	July 19, 2001
Rule 328	Continuous Emissions Monitoring	October 23, 1978

 Table 3.4 - Adoption Dates of District Rules Applicable at Issuance of Permit

Rule No.	Rule Name	Adoption Date
Rule 330	Surface Coating of Metal Parts and Products	June 12, 2012
Rule 331	Fugitive Emissions Inspection and Maintenance	December 10, 1991
Rule 333	Control of Emissions from Reciprocating Internal Combustion Engines	June 19, 2008
Rule 342	Control of Oxides of Nitrogen (NOx) from Boilers, Steam Generators and Process Heaters	June 20, 2019
Rule 343	Petroleum Storage Tank Degassing	December 14, 1993
Rule 344	Petroleum Sumps, Pits and Well Cellars	November 10, 1994
Rule 352	Natural Gas-Fired Fan-Type Central Furnaces and Small Water Heaters	October 20, 2011
Rule 353	Adhesives and Sealants	June 21, 2012
Rule 360	Boilers, Water Heaters, and Process Heaters (0.075 - 2 MMBtu/hr)	March 15, 2018
Rule 361	Small Boilers, Steam Generators and Process Heaters	June 20, 2019
Rule 505	Breakdown Conditions (Section A, B1 and D)	October 23, 1978
Rule 603	Emergency Episode Plans	June 15, 1981
Rule 801	New Source Review	August 25, 2016
Rule 802	Nonattainment Review	August 25, 2016
Rule 803	Prevention of Significant Deterioration	August 25, 2016
Rule 804	Emission Offsets	August 25, 2016
Rule 805	Air Quality Impact and Modeling	August 25, 2016
Rule 806	Emission Reduction Credits	August 25, 2016
Rule 808	New Source Review for Major Sources of Hazardous Air Pollutants	May 20, 1999
Rule 810	Federal Prevention of Significant Deterioration (PSD)	June 20, 2013
Rule 901	New Source Performance Standards (NSPS)	September 20, 2010
Rule 1001	National Emission Standards for Hazardous Air Pollutants (NESHAPS)	October 23, 1993
Rule 1301	General Information	August 25, 2016
Rule 1302	Permit Application	November 9, 1993
Rule 1303	Permits	November 9, 1993

Rule No.	Rule Name	Adoption Date
Rule 1304	Issuance, Renewal, Modification and Reopening	November 9, 1993
Rule 1305	Enforcement	November 9, 1993

Engineering Analysis 4.0

4.1 General

The engineering analyses performed for this permit were limited to the review of:

- \rightarrow facility process flow diagrams
- \rightarrow emission factors and calculation methods for each emissions unit
- \rightarrow emission control equipment (including RACT, BACT, NSPS, NESHAP, MACT)
- \rightarrow emission source testing, sampling, CEMS, CAM
- \rightarrow process monitors needed to ensure compliance

Unless noted otherwise, default ROC/THC reactivity profiles from the District's document titled "VOC/ROC Emission Factors and Reactivities for Common Source Types" dated July 13, 1998 (ver 1.1) was used to determine non-methane, non-ethane fraction of THC.

4.2 **Stationary Combustion Sources**

- 4.2.1 General: The stationary combustion sources associated with the Diatomite formation consists of one 6xx.x MMBtu/hr field gas fired steam generator. This unit are used to thermally enhance existing oil recovery in the Diatomite formation using down-hole steam injection. Steam is injected into the oil bearing reservoir, reducing the viscosity of the oil and enhancing its recoverability. The steam generator is are fired field gas.
- 4.2.2 Steam Generator Emission Factors: The following is documentation of the steam generator emissions in parts per million:

 $EF = (2.634 \times 10^{-9}) \text{ (ppmvd) (MW) (F factor)}$

Therefore:

 $ppmvd = EF / (2.634 \times 10^{-9}) (F factor) (MW)$

Where:

 $(2.634 \times 10^{-9}) = (1 \text{ lb-mole} / 379 \text{ ft}^3) (1/1,000,000)$

F factor = Stack flow at $3\% O_2 = 10.051 \text{ dscf/MMBtu}$ at $3\% O_2$

MW NO _X MW ROC MW CO	= 46.01 lb/lb-m = 16 lb/lb-mole = 28 lb/lb-mole	e	
NO _X Emission	Factor =	0.0090 and 0.0110 lb/MMBtu	(Source: BACT Limit)
ROC Emission		0.0040 lb/MMBtu	(Source: BACT Limit)
CO Emission H		0.0190 lb/MMBtu	(application)

Calculated ppm limits:

 $NO_X = 7$ ppmvd and 9 ppmvd ROC = 8.5 ppmvd CO = 27 ppmvd

4.2.3 <u>Steam Generator Emission Controls</u>: The emission controls for the steam generators include the use of an ultra low-NO_x burner, automatic excess O₂ trim controllers and exhaust gas recirculation. Steam generator emissions (at standard conditions and corrected to 3% O₂) are limited to 9 ppmv for units ID #109530 and ID #109458 and 7 ppmv of NO_x for unit (ID#114798). All units are subject to 8.5 ppmv of ROC and 27 ppmv of CO. The NO_x and ROC limits represent BACT. The CO limit is based on PCEC's application. These limits have been verified through source testing.

4.3 Fugitive Hydrocarbon Sources

Emissions of reactive organic compounds from piping components (e.g., valves and connections), pumps, compressors and pressure relief devices associated with the Diatomite Project have been quantified using the correlation equation method, P&P 6100.072 (*Correlation Equation Methodology to Estimate Mass ROC Emissions at O&G Facilities*), for all components associated with the Diatomite Project.

The emission calculation methodology for the fugitive hydrocarbon emissions based on P&P 6100.072 is detailed in Table 5.4 of this permit. All fugitive hydrocarbon components subject to this methodology are monitored by PCEC on a monthly basis. The leak rates from the monitoring are separated into two leak rate groups, "<10K" and " \geq 10K". Each component is then assigned the THC leak rate from Table SVRF-2 in District P&P 6100.072.1998 corresponding to service type (gas/light liquid or oil) component type (e.g. valve, flange, connector, PRD, pump/compressor seal, other). ROC/THC ratios are assigned to each component from District Policy and Procedure 6100.061.1998 Determination of Fugitive Hydrocarbon Emissions at Oil and Gas Facilities Through the Use of Facility Component Counts.

Ongoing compliance is determined by inspection with an organic vapor analyzer and verification of operator records. Permitted fugitive ROC emissions from fugitive components reflect the elimination of ethane from the list of ROCs.

4.4 Tanks/Vessels/Sumps/Separators

- 4.4.1 <u>Oil-Water Separation and Crude Oil Storage Tanks</u>: The Diatomite Project utilizes two 5,480 bbl wash tanks for oil-water separation, two 2,100 bbl crude storage tanks and one closed drain tank. Emissions from these tanks are calculated using USEPA AP-42, Chapter 7 Liquid Storage Tanks (5th Edition, 2/96). Attachment 10.2 contains emission spreadsheets showing the detailed calculations for these tanks.
- 4.4.2 <u>Pits, Sumps and Well Cellars</u>: There are no pits, sumps, or well cellars associated with the Diatomite Project.
- 4.4.3 <u>Waste Water Tanks</u>: The Diatomite Project uses one 2800 bbl waste water tank. The tank is served by vapor recovery. Emissions from the tank are calculated using the same methodology as pits and sumps, and is based on District's P&P 6100.060 (*Calculation of Fugitive Hydrocarbon Emissions at Oil and Gas Facilities by the CARB/KVB Method Modified for the Revised ROC*

Definition). Attachment 10.2 contains an emission spreadsheet showing the detailed calculations for the tanks.

4.5 Other Emission Sources

- 4.5.1 <u>General Solvent Cleaning/Degreasing</u>: Solvent usage (not used as thinners for surface coating) may occur at the facility as part of normal daily operations. The usage includes cold solvent degreasing. Mass balance emission calculations are used assuming all the solvent used evaporates to the atmosphere.
- 4.5.2 <u>Surface Coating</u>: Surface coating operations typically include normal touch up activities. Entire facility painting programs may also be performed. Emissions are determined based on mass balance calculations assuming all solvents evaporate into the atmosphere. Emissions of PM/PM₁₀/PM_{2.5} from paint overspray are not calculated due to the lack of established calculation techniques.
- 4.5.3 <u>Abrasive Blasting</u>: Abrasive blasting with CARB certified sands may be performed as a preparation step prior to surface coating. The engines used to power the compressor may be electric or diesel fired. If diesel fired, permits will be required unless the engine is registered with CARB. Particulate matter is emitted during this process. A general emission factor of 0.01 pound PM per pound of abrasive is used (SCAQMD Permit Processing Manual, 1989) to estimate emissions of PM/PM₁₀/PM_{2.5} when needed for compliance verifications. A PM/PM₁₀/PM_{2.5} ratio of 1.0 is assumed.

4.6 Vapor Recovery/Control Systems

The vapor recovery system collects ROC emissions from the tanks. The collected vapors used as make-up gas to for the tank battery. Overall ROC control efficiency for the system is assumed to be 95 percent.

4.7 BACT/NSPS/NESHAP/MACT

Best Available Control Technology (BACT) was required for the Diatomite Project based on the uncontrolled NO_x and ROC Project Potential to Emit exceeding the 25 lb/day criteria pollutant thresholds for BACT. BACT for NOx and ROC is required for the Diatomite Project. FGR controls on the steam generators were previously determined through District observed source testing to comply with the BACT NOx limits of 7 ppmv (@3%O2) for unit ID #114798 and 9 ppmv (@3%O2) for units ID #109530 and ID #109485. These BACT standards differ due to the dates of installation of these units. BACT for the fugitive I&M components, as well as, the BACT requirements detailed above, are listed in Table 5.7

To date, this facility has not triggered National Emission Standards for Hazardous Air Pollutants (NESHAP) or Maximum Available Control Technology (MACT). The steam generators are subject to NSPS Subpart Dc, but no emission limits of the Subpart apply to these units.

4.8 CEMS/Process Monitoring/CAM

- 4.8.1 <u>CEMS</u>: There are no CEMS at this facility.
- 4.8.2 <u>Process Monitoring</u>: In many instances, ongoing compliance beyond a single (snap shot) source test is assessed by the use of process monitoring systems. Examples of these monitors include the volume of gas burned in the steam generators, fuel usage meters, water injection mass flow meters. Once these process monitors are in place, it is important that they be well maintained and calibrated to ensure that the required accuracy and precision of the devices are within

specifications. The permittee is required to report oil throughput, however this permit requires no specific monitors.

4.8.3 <u>CAM</u>: The Pacific Coast Energy Company - Orcutt Hill Stationary Source is a major source that is subject to the USEPA's Compliance Assurance Monitoring (CAM) rule (40 CFR 64). Any emissions unit at the facility with uncontrolled emissions potential exceeding major source emission thresholds (100 tpy) for any pollutant is subject to CAM provisions. It was determined that CAM was not applicable to any equipment units at this facility.

4.9 Source Testing/Sampling

Source testing and sampling are required in order to ensure compliance with permitted emission limits, prohibitory rules, control measures and the assumptions that form the basis for issuing operating permits. This permit requires source testing of air emissions and process parameters for the steam generators. See Table 5.6 of this permit for source testing requirements.

At a minimum, the process streams below are required to be sampled and analyzed on a periodic basis, per District Rules and standards:

- \rightarrow <u>Produced Oil</u>: API gravity and true vapor pressure of the crude oil.
- → <u>Produced Gas</u>: The H₂S and total sulfur content of fuel gas (i.e., Diatomite Project produced gas and PUC/Orcutt Hill Field produced gas blend).

All sampling and analyses are required to be performed according to District approved procedures and methodologies. Typically, the appropriate ASTM methods are acceptable. For liquids with API gravity over 20, ASTM D323 applies for true vapor pressure (TVP) measurement. In this case, the TVP at the maximum expected temperature shall be calculated from the Reid vapor pressure in accordance with API Bulletin 2518, or equivalent Reid/true vapor pressure correlation. The calculated true vapor pressure is based on the maximum expected operating temperature in the initial crude oil storage tank. TVP sampling methods for liquids with an API gravity under 20^o require specialized procedures per Rule 325.G.2.b. It is important that all sampling and analysis be traceable by chain of custody procedures.

4.10 Part 70 Engineering Review: Hazardous Air Pollutant Emissions

Total emissions of hazardous air pollutants (HAP) are computed for each emissions unit. HAP emission factors and emissions are listed in Part I of this permit.

5.0 Emissions

5.1 General

The facility was analyzed to determine all air-related emission sources. Emissions calculations are divided into "permitted" and "exempt" categories. District Rule 202 determines permit exempt equipment. The permitted emissions for each emissions unit is based on the equipment's potential-to-emit (as defined by Rule 102).

Section 5.2 details the permitted emissions for each emissions unit. Section 5.3 details the overall permitted emissions for the facility based on reasonable worst-case scenarios using the potential-to-emit for each emissions unit. Section 5.4 provides the federal potential to emit calculation using the definition of potential to emit used in Rule 1301. Section 5.5 provides the estimated HAP emissions from the facility. Section 5.6 (if applicable) provides the estimated emissions

from permit exempt equipment and also serves as the Part 70 list of insignificant emissions. Section 5.7 addresses GHG emissions.

The District uses a computer database to accurately track the emissions from a facility. Attachment 10.3 contains the District's documentation for the information entered into that database.

5.2 Permitted Emission Limits - Emission Units

Each emissions unit associated with the facility was analyzed to determine the potential-to-emit for the following pollutants:

- \Rightarrow Nitrogen Oxides (NO_x)³
- \Rightarrow Reactive Organic Compounds (ROC)
- \Rightarrow Carbon Monoxide (CO)
- \Rightarrow Sulfur Oxides (SO_x) ⁴
- \Rightarrow Particulate Matter (PM) ⁵
- \Rightarrow Particulate Matter smaller than 10 microns (PM₁₀)
- \Rightarrow Particulate Matter smaller than 2.5 microns (PM_{2.5})
- \Rightarrow Greenhouse Gases (GHG)

Permitted emissions are calculated for both short term (daily) and long term (annual) time periods. Section 4.0 (Engineering Analysis) provides a general discussion of the basic calculation methodologies and emission factors used. The reference documentation for the specific emission calculations, as well as detailed calculation spreadsheets, may be found in Section 4 and Attachments 10.1 and 10.2 respectively. Table 5.1-1 provides the basic operating characteristics. Table 5.1-2 provides the specific emission factors. Tables 5.1-3 and 5.1-4 show the permitted short-term and permitted long-term emissions for each unit or operation. In the table, the last column indicates whether the emission limits are federally-enforceable. Those emissions limits that are federally-enforceable are indicated by the symbol "FE". Those emissions limits that are District-only enforceable are indicated by the symbol "A".

5.3 Permitted Emission Limits - Facility Totals

The total potential-to-emit for all emission units associated with this facility were analyzed. This analysis looked at the reasonable worst-case operating scenarios for each operating period. The equipment operating in each of the scenarios are presented below. Unless otherwise specified, the operating characteristics defined in Table 5.1-1 for each emission unit are assumed. Table 5.2 shows the total permitted emissions for the facility. There has been no change to the Dolomite Project permitted emission totals since issuance of the previous permit renewal. A correction was made to the non-Dolomite fugitive emission totals listed in Table 5.4. See Section 5.3 of Part I for details.

³ Calculated and reported as nitrogen dioxide (NO₂)

⁴ Calculated and reported as sulfur dioxide (SO₂)

 $^{^5\,}$ Calculated and reported as all particulate matter smaller than 100 μm

5.4 Part 70: Federal Potential to Emit for the Facility

Table 5.3 lists the federal Part 70 potential to emit. Coating emissions, although exempt from permit requirements, are included in the federal potential to emit calculation. This facility does not belong to one of the categories listed in 40 CFR 70.2, therefore fugitive emissions do not contribute to the federal PTE.

5.5 Part 70: Hazardous Air Pollutant Emissions for the Facility

Hazardous air pollutants (HAP) emission factors, for each type of emissions unit, are listed in Table 5.5-1. Potential HAP emissions, based on the worst-case scenario, are shown in Table 5.5-2. HAPs emission totals have been revised since issuance of the previous permit renewal based on revised HAPs emission factors.

5.6 Exempt Emission Sources/Part 70 Insignificant Emissions

Equipment/activities exempt pursuant to District Rule 202 include maintenance operations involving surface coating. In addition, *insignificant activities* such as maintenance operations using paints and coatings, contribute to the facility emissions. The family trap is considered exempt and the emissions appear in the de minimis table.

5.7 Greenhouse Gas Emissions Computations

On January 20, 2011, the District revised Rule 1301 to include greenhouse gases (GHGs) that are "subject to regulation" in the definition of "Regulated Air Pollutants". The facility's potential to emit has been estimated, however the greenhouse gas PTE is not an emission limit. The facility will not become subject to emission limits for GHGs unless a project triggers federal Prevention of Significant Deterioration requirements under Rule 810.

GHG emissions from combustion sources are calculated using emission factors found in Tables C-1 and C-2 of 40 CFR Part 98 and global warming potentials found in Table A-1 of 40 CFR Part 98. CO_2 equivalent emission factors are calculated for CO_2 , CH_4 , and N_2O individually, then summed to calculate a total CO_{2e} emission factor. Annual CO_{2e} emission totals are provided in the emission tables of this permit.

For natural gas combustion the emission factor is:

 $(53.02 \ kg \ CO_2/MMbtu) \ (2.2046 \ lb/kg) = 116.89 \ lb \ CO_2/MMBtu \\ (0.001 \ kg \ CH_4/MMBtu) \ (2.2046 \ lb/kg) (21 \ lb \ CO_2e/lb \ CH4) = 0.046 \ lb \ CO_2e/MMBtu \\ (0.0001 \ kg \ N_2O/MMBtu) \ (2.2046 \ lb/kg) (310 \ lb \ CO_2e/lb \ N_2O) = 0.068 \ lb \ CO_2e/MMBtu \\ Total \ CO2e/MMBtu = 116.89 + 0.046 + 0.068 = 117.00 \ lb \ CO_2e/MMBtu \\$

Table 5.1-1PCEC Newlove Lease: Diatomite ProjectPTO 8420-R12Operating Equipment Description

			Devi	ce Specificatio	ons		Max Operating Schedule					
Equipment Category	Description	Dev No	Feed	Parameter	Size Units	Capacity	Units	Load	hr	day	qtr	year
<u>Phase I</u>												
Combustion	Steam Generator (SG 100)	109530		PUC/prod gas TVP	62.5 MMBTU/h	ır		1.0	1.0	24	2,190	8,760
Tanks	Crude Tank T-350	109488	Crude	3.000	2,100 bbls	3,000	bbl/day	1.0	1.0	24	2,190	8,760
	Wash Tank T-340	109487	O/W	3.000	5,480 bbls	3,000	bbl/day	1.0	1.0	24	2,190	8,760
	Reject/Stock Tank T-360	109489	O/W	3.000	2,100 bbls	3,000	bbl/day	1.0	1.0	24	2,190	8,760
	Wastewater Tank T-330	109486	Water	-	2,800 bbls		'	1.0	1.0	24	2,190	
				Service								
Fugitive Components	Valves, Connectors, Flanges, PRD, Seals			Gas/Lt Liq	6,821 comp	0.31	ROC/TOC	1.0	1.0	24	2,190	8,760
Phase 2												
Combustion	Steam Generator (SG 300)	109485		PUC/prod gas TVP	62.5 MMBTU/h			1.0	1.0	24	2,190	8,760
Tanks	Wash Tank T-640	109536	O/W	3.000	5,480 bbls	3,000	bbl/day	1.0	1.0	24	2,190	8,760
	Drain Tank T-690	113561	Water	-	100 bbls		,	1.0	1.0	24	2,190	8,760
	Mobile Sand Bin #1	113481	Water	-	5,050 gallons			1.0	1.0	24	2,190	8,760
	Mobile Sand Bin #2	113482	Water	-	5,050 gallons			1.0	1.0	24	2,190	8,760
				Service	Month #3							
Fugitive Components	Valves, Connectors, Flanges, PRD, Seals			Gas/Lt Liq	3,375 comp	0.31	ROC/TOC	1.0	1.0	24	2,190	8,760
SG-400 + Fugitives												
Combustion	Steam Generator (SG-400)	114798		PUC/prod gas Service	62.5 MMBTU/h			1.0	1.0	24	2,190	8,760
Fugitive Components	Valves, Connectors, Flanges, PRD, Seals			Gas/Lt Liq	15,703 comp	0.31	ROC/TOC	1.0	1.0	24	2,190	8,760

Table 5.1-2 PCEC Newlove Lease: Diatomite Project PTO 8420-R12 Equipment Emission Factors

	Emission Factors													
Equipment Category	Description	Dev No	NO _x	ROC	со	SOx	РМ	PM _{2.5/10}	GHG	Units	Notes			
Phase I														
Combustion	Steam Generator (SG 100)	109530	0.011	0.004	0.019	0.004	0.006	0.006	117.000	lb/MMBTU	А			
Tanks	Crude Tank T-350 Wash Tank T-340 Reject/Stock Tank T-360	109488 109487 109489	Se	e attached	workshe									
	Wastewater Tank T-330	109486		0.00063					J	lb/ft ² -day				
Fugitive Components	Valves, Connectors, Flanges, PRD, Sea		Se	ee attached	l workshe	et for emi	ssion fact	ors.]	lb/comp-day	в			
Phase 2														
Combustion	Steam Generator (SG 300)	109485	0.011	0.004	0.019	0.004	0.006	0.006		lb/MMBTU	А			
Tanks	Wash Tank T-640	109536	Se	e attached	workshe	ets for em	ission fac	tors.	ן					
	Drain Tank T-690	113561		0.00063					-	lb/ft ² -day				
	Mobile Sand Bin #1	113481		0.00189						lb/ft ² -day				
	Mobile Sand Bin #2	113482		0.00189						lb/ft ² -day				
Fugitive Components	Valves, Connectors, Flanges, PRD, Sea		Se	ee attached	l workshe	et for emi	ssion fact	ors.]	lb/comp-day	в			
SG-400 + Fugitives														
Combustion	Steam Generator (SG-400)	114798	0.009	0.004	0.019	0.004	0.006	0.006		lb/MMBTU	А			
Fugitive Components	Valves, Connectors, Flanges, PRD, Sea		Se	ee attached	l workshe	et for emi	ssion fact	ors.]	lb/comp-day	в			

Notes:

A - NOx, ROC, and CO em factors: manufacturers specs; SOx em factor: mass balance based on 23 ppmv S content as H2S and 1050 BTU/scf; PM, PM10: AP-42, Table 1.4-2 B - Screening Value Range Factor (SVRF) emission factors found in APCD Policy and Procedure 6100.072.1998

Table 5.1-3 PCEC Newlove Lease: Diatomite Project PTO 8420-R12 Hourly and Daily Emissions

			N	IO _x	R	oc	C	:0	S	o _x	PM		PM _{2.5/10}		(GHG
Equipment Category	Description	Dev No	lb/hr	lb/day	lb/hr	lb/day	lb/hr	lb/day	lb/hr	lb/day	lb/hr	lb/day	lb/hr	lb/day	lb/hr	lb/day
Phase I																
Combustion	Steam Generator (SG 100)	109530	0.69	16.50	0.25	5.93	1.19	28.50	0.23	5.55	0.38	9.00	0.38	9.00	7312.50	175500.00
Tanks	Crude Tank T-350	109488			0.01	0.29										
	Wash Tank T-340	109487			0.00	0.01										
	Reject/Stock Tank T-360	109489			0.01	0.29										
	Wastewater Tank T-330	109486			0.01	0.14										
Fugitive Components	Valves, Connectors, Flanges, PRD, Sea				0.79	18.96										
Phase 1 Subtotal			0.69	16.50	1.07	25.62	1.19	28.50	0.23	5.55	0.38	9.00	0.38	9.00	7312.50	175500.00
Phase 2a																
Combustion	Steam Generator (SG 300)	109485	0.69	16.50	0.25	5.93	1.19	28.50	0.23	5.55	0.38	9.00	0.38	9.00	7312.50	175500.00
Tanks	Wash Tank T-640	109536			0.00	0.01										
	Drain Tank T-690	113561			0.00	0.04										
	Mobile Sand Bin #1	113481			0.01	0.26										
	Mobile Sand Bin #2	113482			0.01	0.26										
Fugitive Components	Valves, Connectors, Flanges, PRD, Sea				0.12	2.93										
<u>SG-400 + Fugitives</u>																
Combustion	Steam Generator (SG-400)	114798	0.53	12.81	0.25	5.93	1.19	28.50	0.23	5.55	0.38	9.00	0.38	9.00	7312.50	175500.00
Fugitive Components	Valves, Connectors, Flanges, PRD, Sea				0.61	14.64										
Phase 1 + 2 Subtotal			1.38	33.00	1.46	35.06	2.38	57.00	0.46	11.11	0.75	18.00	0.75	18.00	14625.00	351000.00
SG-400 + Fugitives			0.53	12.81	0.86	20.57	1.19	28.50	0.23	5.55	0.38	9.00	0.38	9.00	7312.50	175500.00
Phase 1 + 2 + SG-400	+ Fugitives Total		1.91	45.81	2.32	55.63	3.56	85.50	0.69	16.66	1.13	27.00	1.13	27.00	21937.50	526500.00

Table 5.1-4 PCEC Newlove Lease: Diatomite Project PTO 8420-R12 Quarterly and Annual Emissions

			N	Ox	R	00	C	0	S	o _x	P	M	PM	2.5/10	G	GHG
Equipment Category	Description	Dev No	TPQ	TPY	TPQ	TPY	TPQ	TPY	TPQ	TPY	TPQ	TPY	TPQ	TPY	TPQ	TPY
<u>Phase I</u>																
Combustion	Steam Generator (SG 100)	109530	0.75	3.01	0.27	1.08	1.30	5.20	0.25	1.01	0.41	1.64	0.41	1.64	8007.19	32028.75
Tanks	Crude Tank T-350	109488			0.01	0.05										
	Wash Tank T-340	109487			0.00	0.00										
	Reject/Stock Tank T-360	109489			0.01	0.05										
	Wastewater Tank T-330	109486			0.01	0.03										
Fugitive Components	Valves, Connectors, Flanges, PRD, Sea				0.56	2.23										
Phase 1 Subtotal			0.75	3.01	0.86	3.44	1.30	5.20	0.25	1.01	0.41	1.64	0.41	1.64	8007.19	32028.75
Phase 2																
Combustion	Steam Generator (SG 300)	109485	0.75	3.01	0.27	1.08	1.30	5.20	0.25	1.01	0.41	1.64	0.41	1.64	8007.19	32028.75
Tanks	Wash Tank T-640	109536			0.00	0.00										
	Drain Tank T-690	113561			0.03	0.10										
	Mobile Sand Bin #1	113481			0.01	0.05										
	Mobile Sand Bin #2	113482			0.01	0.05										
Fugitive Components	Valves, Connectors, Flanges, PRD, Sea				0.24	0.99										
Phase 2 Subtotal			0.75	3.01	0.56	2.28	1.30	5.20	0.25	1.01	0.41	1.64	0.41	1.64	8007.19	32028.75
<u>SG-400 + Fugitives</u>																
Combustion	Steam Generator (SG-400)	114798	0.58	2.34	0.27	1.08	1.30	5.20	0.25	1.01	0.41	1.64	0.41	1.64	8007.19	32028.75
Fugitive Components	Valves, Connectors, Flanges, PRD, Sea				0.67	2.67										
Phase 1 + 2 Total			1.51	6.02	1.42	5.72	2.60	10.40	0.51	2.03	0.82	3.29	0.82	3.29	16014.38	64057.50
SG-400 + Fugitives			0.58	2.34	0.94	3.75	1.30	5.20	0.25	1.01	0.41	1.64	0.41	1.64	8007.19	32028.75
Phase 1 + 2 + SG-400 -	+ Fugitives Total		2.09	8.36	2.36	9.47	3.90	15.60	0.76	3.04	1.23	4.93	1.23	4.93	24021.56	96086.25

Table 5.1-5
PCEC Newlove Lease: Diatomite Project
PTO 8240-R12
Summary of Fugitive Emission Estimates Per APCD P&P 6100.072.1998

							Pha	ase 1 &											
		Nu	umber o	f		Number of		N	umber	of	THC S	SVRF					ROC	ROC	ROC
Category	Product	Compor	aanto M	onth 1	Comm	onents Mon	46.2	Compo	onents N	lonth 2	(lb/com	n dou)	ROC /THC	lb/mo (#1)	lb/mo (#2)	lb/mo (#3)	lb/day	TPQ	TPY
Calegory	FIOUUCI	leaks	leaks		leaks			leaks	leaks					(#1)	(#2)	(#3)	ib/uay	IFQ	IFI
Valves	Gas/Lt Liq	<10K 1,156	≥10K	Total 1,158	<10K 1,157	leaks ≥10K	Total 1,158	<10K 1,157	≥10K	Total 1,158	leaks <10K 1.85E-03	leaks ≥10K 7.33E+00	0.31	158.40	89.30	89.30	5.21	0.17	0.6
PRD	Gas/Lt Liq	1,150	2	1,138	1,137	0		1,137	0	1,156	1.27E-02	9.76E+00		93.59	1.68	1.68	3.08	0.05	0.0
Others	Gas/Lt Liq	499	1	500	500	0		499	1	500	1.27E-02	9.76E+00		151.78	59.88	151.78	4.99	0.18	0.7
Connectors	Gas/Lt Liq	3,734	2		3,734	2			2	3,736	6.35E-04	1.37E+00		48.19	48.19	48.19	1.58	0.07	0.2
Flanges	Gas/Lt Liq	1,399	1	1,400	1,400	0			0		1.48E-03	3.23E+00		49.98	19.54	19.54	1.64	0.04	0.1
Open-ended line		0	0	-	0	0		0	0	0	1.27E-03	2.90E+00		0.00	0.00	0.00	0.00	0.00	0.0
Compressors Pumps	Gas/Lt Liq Gas/Lt Liq	0	1	1	12	0			0	1	3.07E-02 3.07E-02	3.80E+00 3.80E+00	0.31	35.83 39.02	0.29	0.29	1.18 1.28	0.02	0.0
Total	Gas/Li Liq	6,812	9		6,818	3			4		3.07E-02	3.00E+00	0.31	39.02	3.47	3.47	18.96	0.02	2.2
Note: Includes	ATC 14385	0,012	5	0,021	0,010	5	0,021	0,017	-	0,021							10.30	0.50	2.2
								Pha	se 2a										
		Nu	umber o	f		Number of			umber	of	THC S	SVRF					ROC	ROC	ROC
													POC	lb/mo	lb/mo	lb/mo			
Category	Product	Compor	nents M	onth 1	Comp	onents Mon	th 2	Compo	onents N	Nonth 3	(lb/com	p-day)	/THC	(#1)	(#2)	(#3)	lb/day	TPQ	TPY
		leaks	leaks	Tatal	leaks		Tetel	leaks	leaks	Tatal									
Volvoo	Coo/Lt Lic	<10K	≥10K	Total	<10K	leaks ≥10K 0		<10K	≥10K 0	Total	leaks <10K		0.24	75.00	6 00	6.90	0.22	0.04	0.4
Valves PRD	Gas/Lt Liq Gas/Lt Liq	389 10	0	390 10	390 10	0		390	0	390 10	1.85E-03 1.27E-02	7.33E+00 9.76E+00		75.90	6.80 1.20	6.80	0.22	0.04	0.1
Others	Gas/Lt Liq	151	0		151	0		151	0		1.27E-02 1.27E-02	9.76E+00 9.76E+00		18.08	18.08	18.08	0.04	0.00	0.0
Connectors	Gas/Lt Liq	1,050	1		1,050	1		1,050	1	1,051	6.35E-04	1.37E+00		19.20	19.20	19.20	0.63	0.03	0.1
Flanges	Gas/Lt Liq	325	0	325	325	0		325	0		1.48E-03	3.23E+00		4.54	4.54	4.54	0.15	0.01	0.0
Open-ended line	Gas/Lt Liq	0	0	0	0	0			0		1.27E-03	2.90E+00	0.31	0.00	0.00	0.00	0.00	0.00	0.0
Compressors	Gas/Lt Liq	1	0	1	1	0			0		3.07E-02	3.80E+00		0.29	0.29	0.29	0.01	0.00	0.0
Pumps	Gas/Lt Liq	10	0		10	0			0		3.07E-02	3.80E+00	0.31	2.89	2.89	2.89	0.10	0.00	0.0
Total		1,936	2	1,938	1,937	1	1,938	1,937	1	1,938							1.74	0.11	0.4
						Dł	1260 2k	o includ	lina De	de 2 a	nd 6								
		Ni	umber o	f		Number of	1030 21		umber (THC S	SVRE					ROC	ROC	ROC
								, in		01	ine .						Roc	Roc	NOC
		_			_			_	_					lb/mo		lb/mo			
Category	Product	Compor leaks	leaks	onth 1	leaks	onents Mon	ith 2	leaks	nents N leaks	Nonth 3	(lb/com	p-day)	/THC	(#1)	(#2)	(#3)	lb/day	TPQ	TPY
		<10K	≥10K	Total	<10K	leaks ≥10K	Total												
Valves	Gas/Lt Liq	0.00		254				<10K	≥10K	Total	leaks <10K	leaks ≥10K							
PRD	Gas/Lt Liq	253	1	204	254	0		<10K 254	210K	Total 254	leaks <10K 1.85E-03		0.31	73.53	4.43	4.43	0.15	0.04	0.1
		253	1	204	254 3	0	254			254		7.33E+00		73.53 0.36	4.43 0.36	4.43 0.36	0.15 0.01	0.04	
	Gas/Lt Liq	3 73	0	3 74	3 74	0	254 3 74	254 3 74	0	254 3 74	1.85E-03 1.27E-02 1.27E-02	7.33E+00 9.76E+00 9.76E+00	0.31 0.31	0.36 100.77	0.36 8.86	0.36 8.86	0.01	0.00	0.0
Connectors	Gas/Lt Liq	3 73 839	0	3 74 841	3 74 840	0 0 1	254 3 74 841	254 3 74 840	0 0 0	254 3 74 841	1.85E-03 1.27E-02 1.27E-02 6.35E-04	7.33E+00 9.76E+00 9.76E+00 1.37E+00	0.31 0.31 0.31	0.36 100.77 17.94	0.36 8.86 17.95	0.36 8.86 17.95	0.01 0.29 0.59	0.00 0.06 0.03	0.0
Connectors Flanges	Gas/Lt Liq Gas/Lt Liq	3 73 839 262	0 1 1 0	3 74 841 262	3 74 840 262	0 0 1 0	254 3 74 841 262	254 3 74 840 262	0 0 0 1	254 3 74 841 262	1.85E-03 1.27E-02 1.27E-02 6.35E-04 1.48E-03	7.33E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00	0.31 0.31 0.31 0.31	0.36 100.77 17.94 3.66	0.36 8.86 17.95 3.66	0.36 8.86 17.95 3.66	0.01 0.29 0.59 0.12	0.00 0.06 0.03 0.01	0.0 0.2 0.1 0.0
Connectors Flanges Open-ended line	Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq	3 73 839 262 0	0 1 1 0 0	3 74 841 262 0	3 74 840 262 0	0 0 1 0 0	254 3 74 841 262 0	254 3 74 840 262 0	0 0 1 0 0	254 3 74 841 262 0	1.85E-03 1.27E-02 1.27E-02 6.35E-04 1.48E-03 1.27E-03	7.33E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00 2.90E+00	0.31 0.31 0.31 0.31 0.31	0.36 100.77 17.94 3.66 0.00	0.36 8.86 17.95 3.66 0.00	0.36 8.86 17.95 3.66 0.00	0.01 0.29 0.59 0.12 0.00	0.00 0.06 0.03 0.01 0.00	0.0 0.2 0.1 0.0 0.0
Connectors Flanges Open-ended line Compressors	Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq	3 73 839 262 0 0	0 1 1 0 0 0	3 74 841 262 0 0	3 74 840 262 0 0	0 0 1 0 0 0	254 3 74 841 262 0 0	254 3 74 840 262 0 0	0 0 1 0 0 0	254 3 74 841 262 0 0	1.85E-03 1.27E-02 6.35E-04 1.48E-03 1.27E-03 3.07E-02	7.33E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00 2.90E+00 3.80E+00	0.31 0.31 0.31 0.31 0.31 0.31	0.36 100.77 17.94 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.01 0.29 0.59 0.12 0.00 0.00	0.00 0.06 0.03 0.01 0.00 0.00	0.0 0.2 0.1 0.0 0.0 0.0
Connectors Flanges Open-ended line Compressors Pumps	Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq	3 73 839 262 0	0 1 1 0 0	3 74 841 262 0 0 3	3 74 840 262 0 0	0 0 1 0 0	254 3 74 841 262 0 0 0 3	254 3 74 840 262 0	0 0 1 0 0	254 3 74 841 262 0 0 0 3	1.85E-03 1.27E-02 1.27E-02 6.35E-04 1.48E-03 1.27E-03	7.33E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00 2.90E+00	0.31 0.31 0.31 0.31 0.31	0.36 100.77 17.94 3.66 0.00	0.36 8.86 17.95 3.66 0.00	0.36 8.86 17.95 3.66 0.00	0.01 0.29 0.59 0.12 0.00	0.00 0.06 0.03 0.01 0.00	0.0 0.2 0.1 0.0 0.0 0.0
Others Connectors Flanges Open-ended line Compressors Pumps Total Phase I, 2a, & 2	Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq	3 73 839 262 0 0 3	0 1 1 0 0 0 0 0 0 0 3	3 74 841 262 0 0 3	3 74 840 262 0 0 3	0 0 1 0 0 0 0 0 1	254 3 74 841 262 0 0 3 3 1,437	254 3 74 840 262 0 0 3	0 0 1 0 0 0 0 0 1	254 3 74 841 262 0 0 0 3	1.85E-03 1.27E-02 6.35E-04 1.48E-03 1.27E-03 3.07E-02	7.33E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00 2.90E+00 3.80E+00	0.31 0.31 0.31 0.31 0.31 0.31	0.36 100.77 17.94 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.01 0.29 0.59 0.12 0.00 0.00 0.03	0.00 0.06 0.03 0.01 0.00 0.00 0.00	0.16 0.00 0.24 0.11 0.02 0.00 0.00 0.00 0.01 0.54 3.22
Connectors Flanges Open-ended line Compressors Pumps Total	Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq	3 73 839 262 0 0 3 1,433	0 1 1 0 0 0 0 0 0 0 3	3 74 841 262 0 0 3 1,437 10,196	3 74 840 262 0 0 3 1,436 10,191	0 0 1 0 0 0 0 1 5	254 3 74 841 262 0 0 3 3 1,437	254 3 74 840 262 0 0 3 1,436	0 0 1 0 0 0 0 0 1	254 3 74 841 262 0 0 3 1,437	1.85E-03 1.27E-02 6.35E-04 1.48E-03 1.27E-03 3.07E-02	7.33E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00 2.90E+00 3.80E+00	0.31 0.31 0.31 0.31 0.31 0.31	0.36 100.77 17.94 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.01 0.29 0.59 0.12 0.00 0.00 0.03 1.19	0.00 0.06 0.03 0.01 0.00 0.00 0.00 0.13	0.00 0.20 0.1 0.00 0.00 0.00 0.00 0.00
Connectors Flanges Open-ended line Compressors Pumps Total	Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq	3 73 839 262 0 0 3 1,433 10,181	0 1 1 0 0 0 0 3 3	3 74 841 262 0 0 3 1,437 10,196	3 74 840 262 0 0 3 1,436 10,191	0 0 1 0 0 0 0 0 1 5 gitives	254 3 74 841 262 0 0 3 3 1,437	254 3 74 840 262 0 0 3 1,436	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	254 3 74 841 262 0 0 3 1,437 10,196	1.85E-03 1.27E-02 1.27E-02 6.35E-04 1.48E-03 1.27E-03 3.07E-02 3.07E-02	7.33E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00 2.90E+00 3.80E+00	0.31 0.31 0.31 0.31 0.31 0.31	0.36 100.77 17.94 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.01 0.29 0.59 0.12 0.00 0.00 0.03 1.19	0.00 0.06 0.03 0.01 0.00 0.00 0.00 0.13	0.00 0.20 0.1 0.00 0.00 0.00 0.00 0.00
Connectors Flanges Open-ended line Compressors Pumps Total	Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq	3 73 839 262 0 0 3 1,433 10,181	0 1 1 0 0 0 0 0 0 0 3	3 74 841 262 0 0 3 1,437 10,196	3 74 840 262 0 0 3 1,436 10,191	0 0 1 0 0 0 0 1 5	254 3 74 841 262 0 0 3 3 1,437	254 3 74 840 262 0 0 3 1,436	0 0 1 0 0 0 0 0 1	254 3 74 841 262 0 0 3 1,437	1.85E-03 1.27E-02 6.35E-04 1.48E-03 1.27E-03 3.07E-02	7.33E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00 2.90E+00 3.80E+00	0.31 0.31 0.31 0.31 0.31 0.31	0.36 100.77 17.94 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.01 0.29 0.59 0.12 0.00 0.00 0.03 1.19	0.00 0.06 0.03 0.01 0.00 0.00 0.00 0.13	0.00 0.20 0.1 0.00 0.00 0.00 0.00 0.00
Connectors Flanges Open-ended line Compressors Pumps Total	Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq	3 73 839 262 0 0 3 1,433 10,181	0 1 1 0 0 0 0 3 3	3 74 841 262 0 0 3 1,437 10,196 SG-4 f	3 74 840 262 0 0 3 1,436 10,191 400 + Fu	0 0 1 0 0 0 0 0 1 5 gitives	254 3 74 841 262 0 0 3 1,437 10,196	254 3 74 840 262 0 0 3 1,436 10,190	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	254 3 74 841 262 0 0 3 1,437 10,196	1.85E-03 1.27E-02 1.27E-02 6.35E-04 1.48E-03 1.27E-03 3.07E-02 3.07E-02	7.33E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00 2.90E+00 3.80E+00	0.31 0.31 0.31 0.31 0.31 0.31	0.36 100.77 17.94 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.01 0.29 0.59 0.12 0.00 0.00 0.03 1.19	0.00 0.06 0.03 0.01 0.00 0.00 0.00 0.13	0.00 0.20 0.1 0.00 0.00 0.00 0.00 0.00
Connectors Flanges Open-ended line Compressors Pumps Total Phase I, 2a, & 2	Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Zb	3 73 839 262 0 0 0 1,433 10,181 10,181 Nu Cor leaks	0 1 1 0 0 0 0 0 3 3 14 	3 74 841 262 0 0 3 1,437 10,196 SG-4 f	3 74 840 262 0 0 0 1,436 10,191 10,191 100 + Fu THC (lb/co	0 0 1 0 0 0 0 5 5 9 1 5 5 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 9 7 9 7	254 3 74 841 262 0 0 3 1,437 10,196 ROC/T	254 3 74 840 262 0 0 3 1,436 10,190	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	254 3 74 841 262 0 0 3 1,437 10,196 ROC	1.85E-03 1.27E-02 1.27E-02 6.35E-04 1.48E-03 1.27E-03 3.07E-02 3.07E-02 ROC	7.33E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00 2.90E+00 3.80E+00	0.31 0.31 0.31 0.31 0.31 0.31	0.36 100.77 17.94 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.01 0.29 0.59 0.12 0.00 0.00 0.03 1.19	0.00 0.06 0.03 0.01 0.00 0.00 0.00 0.13	0.00 0.20 0.1 0.00 0.00 0.00 0.00 0.00
Connectors Flanges Open-ended line Compressors Pumps Total Phase I, 2a, & 2 Category	Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Cas/Lt Liq 2b	3 73 839 262 0 0 3 1,433 10,181 10,181 10,181 Cor Leaks <10K	0 1 0 0 0 0 3 3 14 14 umber o mponen leaks ≥10K	3 74 841 262 0 0 3 1,437 10,196 SG-4 f ts	3 74 840 2622 0 0 3 3 1,436 10,191 100 + Fu THC (lb/co leaks <10	0 0 1 0 0 0 0 0 1 1 5 5 8 VRF mp-day) eaks ≥10K	254 3 74 841 262 0 0 0 3 1,437 10,196 ROC/T HC	254 3 74 840 262 0 0 3 1,436 10,190	0 0 0 0 0 0 1 1 6 ROC Ib/day	254 3 74 841 262 0 0 3 1,437 10,196 ROC TPQ	1.85E-03 1.27E-02 6.35E-04 1.48E-03 1.27E-02 3.07E-02 3.07E-02 ROC TPY	7.33E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00 2.90E+00 3.80E+00	0.31 0.31 0.31 0.31 0.31 0.31	0.36 100.77 17.94 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.01 0.29 0.59 0.12 0.00 0.00 0.03 1.19	0.00 0.06 0.03 0.01 0.00 0.00 0.00 0.13	0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.5
Connectors Flanges Open-ended line Compressors Pumps Total Phase I, 2a, & 2 Category Valves	Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Zb Product Gas/Lt Liq	3 73 839 262 0 0 3 1,433 10,181 10,181 10,181 Cor leaks <10K 3,646	0 1 0 0 0 3 3 14 umber o mponen leaks ≥10K 0	3 74 841 262 0 0 0 3 1,437 10,196 f ts Total 3,646	3 74 840 262 0 0 3 1,436 10,191 10,191 10,191 THC (lb/co (lb/co 1.85E-03	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	254 3 74 841 262 0 0 0 1,437 10,196 ROC/T HC	254 3 74 840 0 0 0 1,436 10,190	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	254 3 74 841 262 0 0 3 1,437 10,196 ROC TPQ	1.85E-03 1.27E-02 1.27E-02 6.35E-04 1.48E-03 1.27E-03 3.07E-02 3.07E-02 3.07E-02 ROC TPY 0.38	7.33E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00 2.90E+00 3.80E+00	0.31 0.31 0.31 0.31 0.31 0.31	0.36 100.77 17.94 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.01 0.29 0.59 0.12 0.00 0.00 0.03 1.19	0.00 0.06 0.03 0.01 0.00 0.00 0.00 0.13	0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.5
Connectors Flanges Open-ended line Compressors Pumps Total Phase I, 2a, & 2 Category Valves PRD	Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Zb Product Gas/Lt Liq Gas/Lt Liq	3 73 839 262 0 0 3 3 1,433 10,181 10,181 Cor leaks <10K 3,0K 6 0 0	0 1 1 0 0 0 0 0 0 14 umber o mponent leaks ≥10K 0 0 0 0 0 0 0 0 0 0 0 0 0	3 74 841 262 0 0 3 1,437 10,196 SG-4 f ts Total 3,646 0	3 74 840 2622 0 0 3 3 1,436 10,191 10,191 100 + Fu THC (lb/co (lb/co leaks <10 1.85E-03 1.27E-03	0 0 1 0 0 0 0 0 0 1 5 SVRF mp-day) leaks ≥10K 7.33E+00 9.76E+00	254 3 74 841 262 0 0 3 1,437 10,196 ROC/T HC	254 3 74 840 0 0 3 1,436 10,190	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	254 3 74 841 262 0 0 3 1,437 10,196 ROC TPQ 0.10 0.00	1.85E-03 1.27E-02 1.27E-02 6.35E-04 1.48E-03 1.27E-02 3.07E-02 3.07E-02 3.07E-02 ROC TPY	7.33E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00 2.90E+00 3.80E+00	0.31 0.31 0.31 0.31 0.31 0.31	0.36 100.77 17.94 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.01 0.29 0.59 0.12 0.00 0.00 0.03 1.19	0.00 0.06 0.03 0.01 0.00 0.00 0.00 0.13	0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.5
Connectors Flanges Open-ended line Compressors Pumps Total Phase I, 2a, & 2 Category Valves PRD Others	Gas/LI Liq Gas/LI Liq	3 73 8399 262 0 0 3 3 1,433 10,181 10,181 10,181 Vice cor leaks <10K 3,646 3,646 0 2,147	0 1 1 0 0 0 0 0 0 0 0 14 umber o mponent leaks ≥10K 0 0 0 0 0 0 0 0 0 0 0 0 0	3 74 841 262 0 0 3 1,437 10,196 SG-4 f ts Total 3,646 0 2,147	3 74 8400 0 0 3 1,436 10,191 10,191 10,191 100 + Fu THC (lb/co leaks <10 1.85E-03 1.27E-02 1.27E-02	0 0 1 0 0 0 0 0 0 1 5 5 8 VRF 5 VRF 5 VRF mp-day) leaks ≥10K 7.33E+00 9.76E+00 9.76E+00	254 3 74 841 262 0 0 0 3 1,437 10,196 ROC/T HC	254 3 74 840 262 0 3 1,436 10,190 10,190 10,190 10,190 10,000 257.10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	254 3 74 841 262 0 0 3 1,437 10,196 ROC TPQ 0.10 0.00 0.39	1.85E-03 1.27E-02 6.35E-04 1.48E-03 1.27E-02 3.07E-02 3.07E-02 3.07E-02 8.07E-02 7.07E-02 9.07E-02 9.07E-02 9.07E-02 1.27E-02 9.07E-02 9.07E-02 1.27E-02 9.07E-02 9.07E-02 1.27E-02 9.0	7.33E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00 2.90E+00 3.80E+00	0.31 0.31 0.31 0.31 0.31 0.31	0.36 100.77 17.94 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.01 0.29 0.59 0.12 0.00 0.00 0.03 1.19	0.00 0.06 0.03 0.01 0.00 0.00 0.00 0.13	0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.5
Connectors Flanges Open-ended line Compressors Pumps Total Phase I, 2a, & 2 Category Valves PRD Others Connectors	Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Zb Product Gas/Lt Liq Gas/Lt Liq	3 73 839 262 0 0 3 3 1,433 10,181 10,181 Cor leaks <10K 3,0K 6 0 0	0 1 1 0 0 0 0 0 0 14 umber o mponent leaks ≥10K 0 0 0 0 0 0 0 0 0 0 0 0 0	3 74 841 262 0 0 3 1,437 10,196 f ts Total 3,646 0 0 2,147 7,223	3 74 840 2622 0 0 3 3 1,436 10,191 10,191 100 + Fu THC (lb/co (lb/co leaks <10 1.85E-03 1.27E-03	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	254 3 74 841 262 0 0 0 3 1,437 10,196 ROC/T HC 0.31 0.31 0.31 0.31	254 3 74 840 262 0 0 3 1,436 10,190 10,190 63.60 0.000 257.10 56.16	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	254 3 74 841 262 0 0 3 1,437 10,196 ROC TPQ 0.10 0.00	1.85E-03 1.27E-02 1.27E-02 6.35E-04 1.48E-03 1.27E-02 3.07E-02 3.07E-02 3.07E-02 ROC TPY	7.33E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00 2.90E+00 3.80E+00	0.31 0.31 0.31 0.31 0.31 0.31	0.36 100.77 17.94 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.01 0.29 0.59 0.12 0.00 0.00 0.03 1.19	0.00 0.06 0.03 0.01 0.00 0.00 0.00 0.13	0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.5
Connectors Flanges Open-ended line Compressors Pumps Total Phase I, 2a, & 2 Category Valves PRD Others Connectors Flanges	Gas/Lt Liq Gas/Lt Liq	3 73 8399 262 0 0 3 3 1,433 10,181 10,181 10,181 Cor leaks <10K 3,646 0 0 2,147 7,222	0 1 1 0 0 0 0 0 14 umber o mponen leaks ≥10K 0 0 0 1	3 74 841 262 0 0 3 1,437 10,196 5 5 6 ts Total 3,646 0 2,147 7,223 2,685	3 74 840 2622 0 0 3 1,436 10,191 10,191 10,191 100 + Fu THC (lb/co (lb/co 1.85E-03 1.27E-02 1.27E-02 6.35E-04	0 0 0 0 0 0 0 0 1 5 5 9 7 5 8 VRF 5 8 VRF mp-day) 1.37E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00	254 3 74 841 262 0 0 3 1,437 10,196 ROC/T HC	254 3 74 840 262 0 0 3 1,436 10,190 10,190 63.60 0.000 257.10 56.16	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.09 0 0.00 8.405 1.855	254 3 74 841 262 0 0 3 1,437 10,196 ROC TPQ 0.10 0.30 0.039 0.08	1.85E-03 1.27E-02 6.35E-04 1.42E-03 1.27E-02 6.35E-04 1.42E-03 3.07E-02 3.0	7.33E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00 2.90E+00 3.80E+00	0.31 0.31 0.31 0.31 0.31 0.31	0.36 100.77 17.94 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.01 0.29 0.59 0.12 0.00 0.00 0.03 1.19	0.00 0.06 0.03 0.01 0.00 0.00 0.00 0.13	0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.5
Connectors Flanges Open-ended line Compressors Pumps Total Phase I, 2a, & 2 Category Valves PRD Others Connectors Flanges Open-ended line Open-ended line	Gas/Lt Liq Gas/Lt Liq	3 73 8399 262 0 0 3 1,433 10,181 10,181 10,181 10,181 10,181 10,181 10,181 10,181 2,684 2,147 7,222 2,684	0 1 1 0 0 0 0 0 3 3 14 umber o mponem leaks ≥10K 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	3 74 841 262 0 0 3 3 1,437 10,196 5 5 6 4 5 5 6 4 7,223 2,685 0 0	3 74 8400 0 3 1,436 10,191 100 + Fu THC (lb/co))) (lb/co (lb/co (lb/co))) (lb/co (lb/co))) (lb/co)) (lb/co))) (lb/co)) (lb/co)))) (0 0 0 0 0 0 0 0 1 5 5 9 7 5 8 VRF 5 8 VRF mp-day) 1.37E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00	254 3 74 841 262 0 0 3 1,437 10,196 ROC/T HC	254 3 74 840 0 0 3 1,436 10,190 ib/mo 63.60 0.000 257.10 56.16 67.91	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	254 3 74 841 262 0 0 3 1,437 10,196 ROC TPQ 0.10 0.000 0.39 0.088 0.10	1.85E-03 1.27E-02 6.35E-04 1.48E-03 1.27E-02 6.35E-04 1.48E-03 1.27E-03 3.07E-02 3.07E-02 3.07E-02 3.07E-02 7.07E-02 0.08 0.00 1.54 0.34 0.34 0.34	7.33E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00 2.90E+00 3.80E+00	0.31 0.31 0.31 0.31 0.31 0.31	0.36 100.77 17.94 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.01 0.29 0.59 0.12 0.00 0.00 0.03 1.19	0.00 0.06 0.03 0.01 0.00 0.00 0.00 0.13	0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.5
Connectors Flanges Open-ended line Compressors Pumps Total Phase I, 2a, & 2 Category Valves PRD Others Connectors Flanges Open-ended line Compressors Pumps	Gas/LI Liq Gas/LI Liq Gas/LI Gas/LI Liq Gas/LI Liq Gas/LI Liq Gas/LI Liq Gas/LI Liq Gas/	3 73 8399 262 0 0 3 1,433 10,181 10,181 0,181 0 10,181 2,684 0 0 2,147 7,222 2,684 0 0 2,2,684 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	33 74 841 2622 00 33 1,437 10,196 f f ts Total 3,646 0 0 2,147 7,223 2,685 0 0 2 2 0 0	3 74 8400 0 0 3 1,436 10,191 400 + Fu THC (lb/co))))))))))))))))))))))))))))))))))))	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	254 3 74 841 262 0 0 3 3 1,437 10,196 ROC/T HC 0.31 0.31 0.31 0.31 0.31 0.31	254 3 74 840 0 0 3 1,436 10,190 10,190 (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)(c) (c)(c) (c)(c)(c)(c)(c)(c)(c)(c)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	254 3 74 841 262 0 0 0 3 3 1,437 10,196 ROC TPQ 0.10 0.000 0.39 0.08 0.000 0.000 0.000	1.85E-03 1.27E-02 6.35E-04 1.48E-03 1.27E-02 6.35E-04 1.48E-03 1.27E-02 3.0	7.33E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00 2.90E+00 3.80E+00	0.31 0.31 0.31 0.31 0.31 0.31	0.36 100.77 17.94 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.01 0.29 0.59 0.12 0.00 0.00 0.03 1.19	0.00 0.06 0.03 0.01 0.00 0.00 0.00 0.13	0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.5
Connectors Flanges Open-ended line Compressors Pumps Total Phase I, 2a, & 2	Cas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Cas/Lt Liq Gas/Lt Liq	3 73 8399 2662 0 0 3 1,433 10,181 10,181 10,181 10,181 2,147 7,222 2,684 0 0 2,1147 7,222 2,684 0 0 2,147	0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	3 74 8411 2622 0 0 3 1,437 10,196 5G-4 f ts Total 3,646 0 0,147 7,223 2,685 0 0 2	3 74 8400 0 0 3 1,436 10,191 10,191 100 + Fu 100 - Fu 100	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	254 3 74 841 262 0 0 3 3 1,437 10,196 ROC/T HC 0.31 0.31 0.31 0.31 0.31 0.31	2544 374 840 2662 0 0 3 3 1,436 10,190 63.600 257.10 56.16 67.91 0.000 257.40 56.16 67.91	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	254 3 74 841 262 0 0 3 3 1,437 10,196 ROC TPQ 0.10 0.000 0.39 0.08 0.101 0.000	1.85E-03 1.27E-02 6.35E-04 1.42E-02 6.35E-04 1.42E-03 3.07E-02 3.0	7.33E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00 2.90E+00 3.80E+00	0.31 0.31 0.31 0.31 0.31 0.31	0.36 100.77 17.94 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.01 0.29 0.59 0.12 0.00 0.00 0.03 1.19	0.00 0.06 0.03 0.01 0.00 0.00 0.00 0.13	0.00 0.20 0.1 0.00 0.00 0.00 0.00 0.00
Connectors Flanges Open-ended line Compressors Pumps Total Phase I, 2a, & 2 Category Valves PRD Others Connectors Flanges Open-ended line Compressors Pumps Total	Cas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Cas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq	3 73 839 262 0 0 3 1,433 10,181 10,181 10,181 20,18	0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	3 74 841 262 0 0 3 3 1,437 10,196 f f ts Total 3,646 0 0 4 7,723 2,685 0 2 2 0 15,703	3 74 8400 0 0 3 1,436 10,191 10,191 100 + Fu 100 - Fu 100	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	254 3 74 841 262 0 0 3 3 1,437 10,196 ROC/T HC 0.31 0.31 0.31 0.31 0.31 0.31	2544 374 840 2662 0 0 3 3 1,436 10,190 63.600 257.10 56.16 67.91 0.000 257.40 56.16 67.91	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	254 3 74 841 262 0 0 0 3 3 1,437 10,196 ROC TPQ 0.10 0.000 0.339 0.088 0.100 0.000 0.000 0.000 0.000	1.85E-03 1.27E-02 1.27E-02 6.35E-04 1.48E-03 1.27E-03 3.07E-02 3.0	7.33E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00 2.90E+00 3.80E+00	0.31 0.31 0.31 0.31 0.31 0.31	0.36 100.77 17.94 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.01 0.29 0.59 0.12 0.00 0.00 0.03 1.19	0.00 0.06 0.03 0.01 0.00 0.00 0.00 0.13	0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.5
Connectors langes Joen-ended line Compressors lumps ortal category langes Phase I, 2a, & 2 Category langes Category langes Connectors langes langes lumps lumps lumps lumps lumps lumps lumps langes lumps lumps lumps langes lumps lumps lumps lumps langes lumps	Cas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Cas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq Gas/Lt Liq	3 73 8399 262 0 0 3 1,433 10,181 10,181 0,181 0 10,181 2,684 0 0 2,147 7,222 2,684 0 0 2,2,684 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	33 74 841 2622 00 33 1,437 10,196 f f ts Total 3,646 0 0 2,147 7,223 2,685 0 0 2 2 0 0	3 74 8400 0 0 3 1,436 10,191 10,191 100 + Fu 100 - Fu 100	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	254 3 74 841 262 0 0 3 3 1,437 10,196 ROC/T HC 0.31 0.31 0.31 0.31 0.31 0.31	2544 374 840 2662 0 0 3 3 1,436 10,190 63.600 257.10 56.16 67.91 0.000 257.40 56.16 67.91	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	254 3 74 841 262 0 0 0 3 3 1,437 10,196 ROC TPQ 0.10 0.000 0.339 0.088 0.100 0.000 0.000 0.000 0.000	1.85E-03 1.27E-02 1.27E-02 6.35E-04 1.48E-03 1.27E-03 3.07E-02 3.0	7.33E+00 9.76E+00 9.76E+00 1.37E+00 3.23E+00 2.90E+00 3.80E+00	0.31 0.31 0.31 0.31 0.31 0.31	0.36 100.77 17.94 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.36 8.86 17.95 3.66 0.00 0.00	0.01 0.29 0.59 0.12 0.00 0.00 0.03 1.19	0.00 0.06 0.03 0.01 0.00 0.00 0.00 0.13	0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0

Valves PRD Others Connectors Flanges Open-ended lines Compressors Pumps 644 13 225 1,891 587 0 642 13 224 1,889 587 0 2 0 1 0 13 5 3,374 13 3,369

1

Table 5.2 PCEC Newlove Lease: Diatomite Project PTO 8420-R12 Total Diatomite Project

A. HOURLY (lb/hr)

Equipment Category	NO _X	ROC	CO	SOx	PM	PM _{2.5/10}	GHG
Combustion	1.91	0.74	3.56	0.69	1.13	1.13	21,937.50
Tanks		0.05					
Fugitive Components		1.52					
	1.91	2.32	3.56	0.69	1.13	1.13	21937.50

B. DAILY (Ib/day)

Equipment Category	NO _x	ROC	СО	SOx	PM	PM _{2.5/10}	GHG
Combustion	45.81	17.78	85.50	16.66	27.00	27.00	526,500.00
Tanks		1.32					
Fugitive Components		36.53					
	45.81	55.63	85.50	16.66	27.00	27.00	526,500.00

C. QUARTERLY (tpq)

Equipment Category	NO _x	ROC	CO	SOx	PM	PM _{2.5/10}	GHG
Combustion	2.09	0.81	3.90	0.76	1.23	1.23	24,021.56
Tanks		0.08					
Fugitive Components		1.46					
	2.09	2.36	3.90	0.76	1.23	1.23	24,021.56

D. ANNUAL (tpy)

Equipment Category	NO _x	ROC	CO	SOx	PM	PM _{2.5/10}	GHG
Combustion	8.36	3.24	15.60	3.04	4.93	4.93	96,086.25
Tanks		0.34					
Fugitive Components		4.30					
	8.36	7.88	15.60	3.04	4.93	4.93	96,086.25

Table 5.3 PCEC Newlove Lease: Diatomite Project PTO 8420-R12 Diatomite Project Federal PTE

A. HOURLY (lb/hr)

Equipment Category	NOx	ROC	со	SOx	PM	PM _{2.5/10}	GHG
Combustion	1.91	0.74	3.56	0.69	1.13	1.13	21,937.50
Tanks		0.05					
	1.91	0.80	3.56	0.69	1.13	1.13	21937.50

B. DAILY (lb/day)

Equipment Category	NO _X	ROC	со	SOx	PM	PM _{2.5/10}	GHG
Combustion Tanks	45.81 	17.78 1.32	85.50 	16.66 	27.00	27.00	526,500.00
	45.81	19.09	85.50	16.66	27.00	27.00	526,500.00

C. QUARTERLY (tpq)

Equipment Category	NOx	ROC	со	SOx	PM	PM _{2.5/10}	GHG
Combustion	2.09	0.81	3.90	0.76	1.23	1.23	24,021.56
Tanks		0.08					
	2.09	0.90	3.90	0.76	1.23	1.23	24,021.56

D. ANNUAL (tpy)

Equipment Category	NOx	ROC	со	SOX	PM	PM _{2.5/10}	GHG
Combustion	8.36	3.24	15.60	3.04	4.93	4.93	96,086.25
Tanks		0.34					
	8.36	3.58	15.60	3.04	4.93	4.93	96,086.25

Table 5.4 Pacific Coast Newlove Lease (Diatomite + non-thermal): Permit to Operate 8240-R12 Total Newlove Lease Facility Potential To Emit

A. HOURLY (lb/hr)

Equipment Category	NOx	ROC	со	SOx	PM	PM _{2.5/10}	GHG
Non-Diatomite							
Tanks		0.12					
Pits and Sumps		1.95					
Exempt Surface Coating		0.01					
Fugitive Hydrocarbons		3.71					
Diatomite							
Stream Generator	1.91	0.74	3.56	0.69	1.13	1.13	21,937.50
Tanks		0.05					
Fugitive Components		1.52					
	1.91	8.10	3.56	0.69	1.13	1.13	21937.50

B. DAILY (Ib/day)

Equipment Category	NO _x	ROC	CO	SOx	PM	PM _{2.5/10}	GHG
Non-Diatomite							
Tanks		2.97					
Pits and Sumps		46.97					
Exempt Surface Coating		0.01					
Fugitive Hydrocarbons		88.84					
Diatomite							
Stream Generator	45.81	17.78	85.50	16.66	27.00	27.00	526,500.00
Tanks		1.32					
Fugitive Components		36.53					
	45.81	194.42	85.50	16.66	27.00	27.00	526,500.00

C. QUARTERLY (tpq)

Equipment Category	NOx	ROC	со	SOx	PM	PM _{2.5/10}	GHG
Non-Diatomite							
Tanks		0.14					
Pits and Sumps		2.14					
Exempt Surface Coating		0.01					
Fugitive Hydrocarbons		4.06					
Diatomite							
Stream Generator	2.09	0.81	3.90	0.76	1.23	1.23	24,021.56
Tanks		0.08					
Fugitive Components		1.46					
	2.09	8.69	3.90	0.76	1.23	1.23	24,021.56

D. ANNUAL (tpy)

Equipment Category	NOx	ROC	со	SOx	PM	PM _{2.5/10}	GHG
Non-Diatomite							
Tanks		0.54					
Pits and Sumps		8.56					
Exempt Surface Coating		0.01					
Fugitive Hydrocarbons		16.21					
Diatomite							
Stream Generator	8.36	3.24	15.60	3.04	4.93	4.93	96,086.25
Tanks		0.34					
Fugitive Components		4.30					
	8.36	33.20	15.60	3.04	4.93	4.93	96,086.25

							Equip	ment H	Tat lazardo	Table 5.5-1 rdous Air P	Table 5.5-1 Equipment Hazardous Air Pollutant Factors	It Facto	ſS										
Equipment Category Description	y Description	Dev No	euro y	BO FLIGD RELLION	0.	AURTURN BOAU	augno,	Stry of		Emission Factors	416 ¹⁶	A Kuli	auguation initia	UTING B	Unauges	URINGORD CONTRACTOR	18903	^{Source}	Seally Seally	1940 M	un _{nu} anas	aug Oos	Units
Phase I Combustion ^{1,2}	Steam Generator (SG 100)	109530	1.23E-02	125E-02 400E-03 310E-03 580E-03 265E-02 400E-04 300E-04 270E-03 197E-02 690E-03 200E-04 120E-05 110E-03 140E-03 340E-04 280E-04 210E-03 240E-05	3.10E-0	\$ 5.80E-03	2.65E-02	4.00E-04	3.00E-04	2.70E-03	1.97E-02	6.90E-03	2.00E-04	1.20E-05	1.10E-03	1.40E-03	8.40E-05	3.80E-04	2.60E-04	2.10E-03	2.40E-05	1	lb/MMcf
Tanks	Crude Tank T-350 ³ Wash Tank T-340 ³ RejectStock Tank T-360 ³ Washewater Tank T-330 ⁴	109488 109487 109489 109486		5.31E-02 5.31E-02 5.31E-02 5.28E-02	1 1 1 1	2.71E-02 2.71E-02 2.71E-02 2.64E-02	2.71E-02 1.58E-02 2.71E-02 1.58E-02 2.71E-02 1.58E-02 2.64E-02 1.65E-02				1 1 1 1		1 1 1 1				1 1 1 1	1 1 1 1				4.52E-03 4.52E-03 4.52E-03 4.95E-03	b/b-ROC b/b-ROC b/b-ROC b/b-ROC
Fugitive Components	Fuglitive Components Valves, Connectors, Flanges, PRD, Seals ⁵		I	0.1677	I	0.0032	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	0.1494	lb/lb-ROC
Phase 2 Combustion ^{1,2}	Steam Generator (SG 300)	109485	1.23E-02	123E-02 400E-03 3.10E-03 5.00E-04 2.00E-04 3.00E-04 2.70E-03 1.97E-02 6.90E-03 2.00E-04 1.20E-05 1.40E-05 8.40E-05 3.80E-04 2.00E-04 2.10E-03 2.40E-05	3.10E-0	3 5.80E-03	2.65E-02	4.00E-04	3.00E-04	2.70E-03	1.97E-02	6.90E-03	2.00E-04	1.20E-05	1.10E-03	1.40E-03	8.40E-05	3.80E-04	2.60E-04	2.10E-03	2.40E-05	I	lb/MMcf
Tanks	Wash Tank T-640 ³ Drain Tank T-690 ³ Mobile Sand Bin #1 ⁶ Mobile Sand Bin #2 ⁶	109536 113561 113481 113482	1 1 1 1	5.31E-02 5.31E-02 5.28E-02 5.28E-02	1 1 1 1	2.71E-02 2.71E-02 2.64E-02 2.64E-02	2.71E-02 1.58E-02 2.71E-02 1.58E-02 2.64E-02 1.58E-02 2.64E-02 1.58E-02	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1.1.1.1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	4.52E-03 4.52E-03 4.52E-03 4.52E-03	b/lb-ROC lb/lb-ROC lb/lb-ROC lb/lb-ROC
Fugitive Components SG-400 + Fugitives	Fuglitive Componentis Valves, Connectors, Flanges, PRD, Seals ⁵ SG-400 + Fuglitives		1	0.1677	I	0.0032	i.	I	1	1	1	1	I	I	I	I	I	I	I	I	I.	0.1494	lb/lb-ROC
Combustion ^{1,2} Fugitive Components	Combustion ^{1,2} Steam Generator (SG-400) Fuglitve Components Valves, Comnectors, Flanges, PRD, Seals ⁵	114798	1.23E-02 -	123E-02 460E-03 310E-03 580E-02 265E-02 4.00E-04 3.00E-04 2.70E-03 1.37E-02 6.90E-04 120E-05 1.10E-03 1.40E-03 8.40E-05 3.80E-04 2.10E-03 2.40E-05 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.10E-03	3 5.80E-03 0.00325	2.65E-02 	4.00E-04	1 3.00E-04	1 2.70E-03 	1.97E-02	6.90E-03	2.00E-04	1.20E-05	5 1.10E-03	1.40E-03	8.40E-05 	3.80E-04 	2.60E-04 	2.10E-03 	2.40E-05 	0.1494	lb/MMcf lb/lb-ROC
References:																							

¹Venture County Air Pollation Control District. May 2001. AB 2585 Combastion Emission Factors Natural Oas Fired External Combastion Equipment Table. ¹UESRA July 2005. AB 24-2 Control District. May 2001. AB 2585 Combastion Emission Extor Statural Gas Combastion Equipment Table. ¹The mainsion factors, orginally in miles of Ibb 1-CC, were converted to Ibb RACC using an RACCTOC fraction of 0.0666 from Table 3.2.3 of the District's P&P 6100.060. ¹The emission factors, orginally in miles of Ibb 1-DCC, were converted to Ibb RACC using an RACCTOC fraction of 0.3 from Table 3.2.3 of the District's P&P 6100.060. ¹The emission factors, orginally in miles of Ibb 1-DCC, were converted to Ibb RACC using an RACCTOC fraction of 0.3 from Table 3.2.3 of the District's P&P 6100.060. ¹The emission factors, orginally in miles of Ibb 1-DC, were converted to Ibb RACC using an RACCTOC fraction of 0.3 from Table 3.2.3 of the District's P&P 6100.060. ¹The emission factors, orginally in units of Ibb 1-DC, were converted to Ibb RACC using an RACCTOC fraction of 0.3 from Table 2.3 of the District's P&P 6100.060. ¹The emission factors, orginally in units of Ibb 1-DC, were converted to Ibb RACC using an RACCTOC fraction of 0.3 from Table 2.3 of the District's P&P 6100.060. ¹The emission factors, orginally in units of Ibb 1-DC, were converted to Ibb RACC using an RACTTOC fraction of 0.3 from Table 2.3 of the District's P&P 6100.060.

					An	Table 5.5-2 Annual Hazardous Air Pollution Emissions (TPY)	_ ardous /	Table 5.5-2 Air Pollutic	5-2 ution Err	nissions	(ТРҮ)										
Equipment Category Description	n Description	on vo	PO ALIBOREULIO	Q/ .	"ODIE IOS	are,	anene ye	STA	^{OID}	Hene Lieven	" Kujij	eustue India	^{UIIIIII} II 34	Unitipe .	UNITION CONTRACTOR	HEQOS UN	Selle Cile W	Welchus as	1940 M	Unit allas	^{aue} po _{os}
Phase I Combustion	Steam Generator (SG 100)	109530	3.21E-03	1.20E-03 8.	08E-04 1.	3 6	E-03 1.04E	-04 7.82E-	-05 7.04E-0	04 5.14E-0	3 1.80E-05	3 5.21E-05	3.13E-06	2.87E-04	3.65E-04	2.19E-05	9.91E-05	6.78E-05	.48E-04 6	.26E-06	
Tanks	Crude Tank T-350 Wash Tank T-340 Reject/Stock Tank T-360 Wastewater Tank T-330	109488 109487 109489 109486	1111	2.82E-03 1.01E-04 2.82E-03 1.37E-03		1.44E-03 8.39E-04 5.14E-05 3.00E-05 1.44E-03 8.39E-04 6.86E-04 4.29E-04	E-04 E-05 E-04 E-04	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1		1 1 1 1			2.40E-04 8.57E-06 2.40E-04 1.29E-04
Fugitive Component	Fugitive Components Valves, Connectors, Flanges, PRD, S		I	0.3735	0	0.0072		I	I	I	I	I	I	I	I	I	I	I	I	I	0.3326
Phase 2 Combustion	Steam Generator (SG 300)	109485	3.21E-03	1.20E-03 8.	08E-04 1.	3.21E-03 1.20E-03 8.08E-04 1.51E-03 6.91E-03 1.04E-04 7.82E-05 7.04E-04	E-03 1.04E	-04 7.82E-	-05 7.04E-(04 5.14E-0	5.14E-03 1.80E-03 5.21E-05	3 5.21E-05	5 3.13E-06	2.87E-04	2.87E-04 3.65E-04	2.19E-05	9.91E-05	6.78E-05 5.48E-04		6.26E-06	I
Tanks	Wesh Tank T-640 Drain Tank T-690 Mobile Sand Bin #1 Mobile Sand Bin #2	109536 113561 113481 113482	1 1 1 1	1.01E-04 5.56E-03 2.55E-03 2.55E-03	1 1 1 1	5.14E-05 3.00E-05 2.84E-03 1.66E-03 1.27E-03 7.64E-04 1.27E-03 7.64E-04	E-05 E-03 E-04 E-04		1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1		8.57E-06 4.73E-04 2.18E-04 2.18E-04
Fugitive Components SG-400 + Fugitives	Fugitive Components Valves, Connectors, Flanges, PRD, S SG-400 + Fugitives		I	0.1669	1	0.0032	1	I	I	I	I	I	I	I	I	I	I	1	I	I	0.1486
Combustion	Steam Generator (SG-400)	114798	3.21E-03	1.20E-03 8.	08E-04 1.	321E-03 120E-03 8.08E-04 1.51E-03 6.91E-03 1.04E-04 7.82E-05 7.04E-04 5.14E-03 1.80E-03 5.21E-05 3.13E-06	E-03 1.04E	-04 7.82E-	-05 7.04E-(04 5.14E-0.	3 1.80E-00	3 5.21E-05	3.13E-06	2.87E-04	2.87E-04 3.65E-04 2.19E-05	2.19E-05	9.91E-05 6.78E-05 5.48E-04 6.26E-06	6.78E-05	.48E-04 6	.26E-06	I
Fugitive Component	Fugitive Components Valves, Connectors, Flanges, PRD, S		1	0.4511	-	0.0087	1	1	I	I	I	1	ł	ł	I	1	I.	1	1	1	0.3991
	T	Total HAPs (TPY): 9.0	: 9.62E-03	1.01E+00 2.	42E-03 3	S2E-03 101E+00 242E-03 327E-02 261E-02 313E-04 235E-04 2.11E-03 154E-02 5.40E-03 156E-04 9.39E-06 8.60E-04 110E-03 6.57E-05 2.97E-04 2.03E-04 164E-03 188E-05 8.82E-01	E-02 3.13E	-04 2.35E	-04 2.11E-(03 1.54E-0	2 5.40E-0:	3 1.56E-04	1 9.39E-06	8.60E-04	1.10E-03	6.57E-05	2.97E-04	2.03E-04	.64E-03 1	.88E-05	3.82E-01

Notes: 1. These are estimates only, and are not intended to represent emission limits. 2. Based on CAAA, Section 112 (n) (4) stipulations, the HAP emissions listed above can not be aggregated at the source for any purpose, including determination of HAP major source status for MACT applicability.

Equipment Item	Emission Points	Pollutants/Parameters	Test Method
Each Steam			
Generator			
	Stacks (outlet)	NO _X - ppmv & lb/mmBTU	EPA Method 7E
		CO - ppmv & lb/mmBTU	EPA Method 10
		ROC - ppmv, lb/mmBTU, lb/hr	EPA Method 18
		Sampling Point Dtr	EPA Method 1
		Stack Gas Flow Rate	EPA Method 2
		O ₂ , CO ₂ , Dry Mol Wt	EPA Method 3
		Moisture Content	EPA Method 4
	Inlet	ROC ^f - lb/hr	
		Destruction Efficiency ^f	
	Gas Line	Fuel Gas Flow	Device Gas Meter
		Higher Heating Value	ASTM D-1826-88
		Total Sulfur Content	ASTM D-1072
	Steam	Residence Time (seconds)	Calculated ^e
	Generator		

 Table 5.6

 Steam Generator Source Test Requirements

Site Specific Requirements

- a. Alternative methods may be acceptable on a case-by-case basis.
- b. This test is required to characterize the maximum hourly potential to emit when fired on natural gas for NO_X, CO and ROC in both units of ppmvd (at standard conditions and 3% O₂) and pounds per hour. The test shall be performed at the maximum attainable firing rate allowed by this permit. No determination of compliance shall be established within two hours after a continuous period in which fuel flow to the unit is shut off for 30 minutes or longer.
- c. The emission rates shall be based on EPA Methods 2 and 4, or Method 19 along with the heat input rate.
- d. For NO_X , CO and O_2 , a minimum of three 40-minute runs shall be obtained during each test. An ROC sample for each run shall be taken over a minimum of 5 minutes in accordance with the sampling protocol defined in the source test plan. Turnaround time for laboratory analysis of ROC samples shall be no more than 24 hours from the sampling in the field.
- e. Residence time shall be calculated based on volumetric flow at actual conditions on a wet basis and nominal interior dimensions of the combustion section of each steam generator.
- f. Destruction efficiency applies to the destruction of produced gas in the center burner of the steam generators; only required upon written notification by the District.

Emission Source	Pollutant	BACT Technology	BACT Performance Standard
Steam Generator	NO _x	Ultra Low NO_x burner with automatic excess O_2 trim controller and flue gas recirculation (FGR)	ID# 109530 and ID# 109485: 9 ppmv ID# 114798: 7 ppmv NO _x exhaust emission concentration corrected to 3% O ₂ . Exhaust emission rate: 0.011 lbs/MMBTU: ID# 109530 and ID# 109485 0.009 lbs/MMBTU: ID# 114798
Steam Generator	ROC	Same as above	8.5 ppmv ROC exhaust emission concentration corrected to 3% O ₂ or exhaust emission rate of 0.004 lbs/MMBTU
Fugitive Comps – Valves	ROC	Bellows, diaphragm seal, spring- loaded packing, expandable packing, graphite packing, PTE-coated packing, precision machined stem, sealant injection	LDAR: 100 ppmv THC
Fugitive Comps – PRD	ROC	Vented to vapor recovery or closed vent, soft-seat design	PRDs not vented to vapor recovery or closed vent system are subject to LDAR: 100 ppmv THC
Fugitive Comps – Other	ROC	Welded, new gasket rated to 150% of process pressure at process temperature	LDAR: 100 ppmv THC
Fugitive Comps – Connectors	ROC	Welded, new gasket rated to 150% of process pressure at process temperature	LDAR: 100 ppmv THC
Fugitive Comps – Flanges	ROC	Welded, new gasket rated to 150% of process pressure at process temperature	LDAR: 100 ppmv THC
Fugitive Comps – Compressor Seals (Reciprocating Drives)	ROC	Vented to vapor recovery, elastomer bellows, O-ring seals, dry running secondary containment seals	LDAR: 100 ppmv THC
Fugitive Comps – Compressor Seals (Rotary Drives)	ROC	Vented to vapor recovery or closed vent, dual/tandem mechanical seals, leakless design (e.g. magnetic drive)	LDAR: 100 ppmv THC
Fugitive Comps – Pump Seals	ROC	Vented to vapor recovery or closed vent, dual/tandem mechanical seals	LDAR: 500 ppmv THC

Table 5.7Best Available Control Technology

6.0 Air Quality Impact Analyses

6.1 Modeling

Air quality modeling has not been required for this stationary source.

6.2 Increments

An air quality increment analysis has not been required for this stationary source.

6.3 Monitoring

Air quality monitoring is not required for this stationary source.

6.4 Health Risk Assessment

The Pacific Coast Energy Company - Orcutt Hill Stationary Source is subject to the Air Toxics "Hot Spots" Program (AB 2588). A health risk assessment (HRA) for the Orcutt Hill facilities was prepared by the District on September 28, 1993 under the requirements of the AB 2588 program. The HRA is based on 1991 toxic emissions inventory data submitted to the District by Luft Environmental Consulting on behalf of the Unocal Corporation, the previous owners of the Orcutt Hill stationary source.

Based on the 1991 toxic emissions inventory, a cancer risk of about 5 per million at the property boundary was estimated for this stationary source. This risk is primarily due to benzene emitted from storage tanks at the site. Additionally, chronic and acute noncarcinogenic risks of 0.3 and 0.2 have been estimated by the District and are mainly due to acrolein emissions from internal combustion engines. Approximately 3,663 pounds of benzene and about 317 pounds of acrolein were emitted from the entire stationary source in 1991. The cancer and noncancer risk projections are less than the District's AB 2588 significance thresholds of 10 in a million and 1.0, respectively.

A second health risk assessment (HRA), based on the 2005 toxics emissions inventory, was prepared for the Orcutt Hill facilities in conjunction with the Diatomite Project permit process located on the Newlove Lease. This HRA was revised in January 2009, to reflect the current status of electrification of injection pump engines and engine locations. The results of this HRA are provided below:

Pathway	Health	HARP	HARP	UTM	UTM	Heath	Significant
	Impact	Receptor	Receptor	Easting	Northing	Risk	Risk Level
	Туре	Number	Туре	(NAD83, m)	(NAD83, m)		
Inhalation	Cancer	12024	Boundary	735210	3858241	8.73	≥ 10
Only	Chronic	12024	Boundary	735210	3858241	0.0175	≥ 1
	Acute	11936	Boundary	735998	3859372	0.823	≥ 1
Multi	Cancer	12024	Boundary	735210	3858241	9.80	≥ 10
Pathway	Chronic	12024	Boundary	735210	3858241	0.0175	≥ 1
	Acute	11936	Boundary	735998	3859372	0.823	≥ 1

7.0 CAP Consistency, Offset Requirements and ERCs

7.1 General

Santa Barbara County has not attained the state PM_{10} air quality standards. Therefore, emissions from all emission units at the stationary source and its constituent facilities must be consistent with the provisions of the USEPA and State approved Clean Air Plans (CAP) and must not interfere with progress toward attainment of federal and state ambient air quality standards. Under District regulations, any modifications at the source that result in an emission increase of any nonattainment pollutant exceeding 25 lbs/day must apply BACT (NAR). Increases above offset thresholds will trigger offsets at the source or elsewhere so that there is a net air quality benefit for Santa Barbara County. These offset threshold levels are 240 lbs/day for all attainment pollutants and precursors (except carbon monoxide and PM_{2.5}) and 25 tons/year for all nonattainment pollutants and precursors (except carbon monoxide and PM_{2.5}).

On July 1, 2020, Santa Barbara County achieved attainment for the State ozone standards. This change was initiated by the California Air Resources Board (CARB) at their December 2019 public hearing and it was later approved by the Office of Administrative Law.

7.2 Clean Air Plan

The 2007 Clean Air Plan, adopted by the District Board on August 16, 2007, addressed both federal and state requirements, serving as the maintenance plan for the federal eight-hour ozone standard and as the state triennial update required by the Health and Safety Code to demonstrate how the District will expedite attainment of the state eight-hour ozone standard. The plan was developed for Santa Barbara County as required by both the 1998 California Clean Air Act and the 1990 Federal Clean Air Act Amendments.

In December 2022 the District Board adopted the 2022 Ozone Plan which satisfies all state triennial planning requirements.

7.3 Offset Requirements

The Pacific Coast Energy Company - Orcutt Hill stationary source triggers emission offsets for NO_x and ROCs. Tables 7.3(a) and 7.3(b) summarize the emissions and offset totals for this stationary source.

Table 7.3(a) - Offset Liability Table for PCEC Orcutt Hill Source Updated: January 30, 2024

						Offset	Liability		
				ERC		tons/	year	ERC	
Item	Permit	Facility	Issue Date	Returned?	Project	NO _X	ROC	Source	Notes
1	Prior Offset Liabilities	Various	pre-8/2016	n/a	See Archive Offset Tables	11.357	18.348	Various	(a)
2	ATC 14921	Pinal Lease	03/09/17	No	Wash Tank Replacement	0.000	0.440	ERC 301	(b)
3	ATC/PTO 15256	Orcutt Hill Field (MVFF)	11/30/18	No	MVFF Throughput Increase	0.000	0.013	ERC 462	
4	ATC 15506	Newlove Lease	07/30/20	No	Wash Tank Replacement	0.000	0.270	ERC 507	
5	ATC 15980	Cal Coast Lease (Orcutt Hill)	04/27/23	No	Wash Tank Replacement	0.000	0.090	ERC 565	(b)
6	ATC 16040	Pinal Lease	07/12/23	No	Produced Water Tank Replacement	0.000	0.196	ERC 548	(b)
7	ATC 16121	Newlove Lease	TBD	No	Wash Tank Replacement	0.000	0.128	ERC 640	(b)

Notes

(a)

(b)

Pre-August 26, 2016 offset liabilities are summarized in Items (1). See facility Archive Offset Tables for details. NOx for ROC Interpollutant trade. See Table 1(b) for ERCs required to mitigate the offset liability. ERC Source denotes the ERC Certificate # used by the ATC permit. (c)

Permits with zero emission increases not shown in this table. (d)

NtbCapod orgishares(GroupstENGRN+POB)6GastMajor SourcestSSID 02667 Paolio Coast Energy Droutt HilD(Hises)(Post 2016 NSR Pule Change PCEC Oroutt HilD(Hises-ERC Table - (04-03-23) sites)[Table 1(a) - Olisets

Table 7.3(b) - Emission Reduction Credits Table for PCEC Orcutt Hill Source Updated: January 30, 2024

					Emission Red	uction Credits			
			Surrender	ERC	tons/	/ear	Offset	ERC	
Item	Permit	Facility	Date	Returned?	NOx	ROC	Ratio	Source	NOTES
1	Prior Offset Liabilities	Various	pre-8/2016	n/a	13.628	22.017	varied	Various	(a)(b)
2	ATC 14921	Pinal Lease	03/09/17	No	0.000	0.484	1.1	ERC 301	(a)(b)(c)
3	ATC/PTO 15256	Orcutt Hill Field (MVFF)	11/30/18	No	0.000	0.014	1.1	ERC 462	(a)(b)
4	ATC 15506	Newlove Lease	07/30/20	No	0.000	0.297	1.1	ERC 507	(a)(b)
5	ATC 15980	Cal Coast Lease (Orcutt Hill)	04/27/23	No	0.000	0.099	1.1	ERC 565	(a)(b)(c)
6	ATC 16040	Pinal Lease	01/17/23	No	0.000	0.215	1.1	ERC 548	(a)(b)(c)
7	ATC 16121	Newlove Lease	TBD	No	0.000	0.141	1.1	ERC 640	(a)(b)

TOTALS (tpy) = 13.628 23.268

TOTALS (tpy) = 11.357 19.485

Notes

(a) Items 1 reflects all NSR ERCs used for the PCEC Orcutt Hill stationary source facilities prior to August 26, 2016.

See the August 26, 2016 Archive Offset Tables for details.

Brown text cells require data entry. Do not enter data in Black text cells (b)

(c) NOx for ROC interpollutant trade.

od orgisharenGroupzENGR/WPQ08GastMajor SourcestSSID 02667 Paolio Coast Energy Orout HINOlfisets(Post 2016 NSR Rule Change PCEC Orout HII Offset-ERC Table - (04-03-23).dsr[Table 1b] - ERCs

7.4 Emission Reduction Credits

The Newlove Lease provides 30.86 tons of ROC per quarter and 1.33 tons of NAROC per quarter emission reduction credits to the Freeport McMoran Point Pedernales Project. This facility was included in the emission reduction agreement between Unocal and the District dated August 11, 1986. The ROC credits come from the control of emissions from the three wash tanks and the crude storage tank. The tank emissions include flashing losses from the first wash tank the produced fluid enters. A memo dated April 26, 1988 to the PTO 6708 file 7.2.56 written by Al Ronyecz, the project manager at the time, documents the flashing loss calculations. These credits are verified through annual process parameter monitoring. A complete description of the emission mitigations required for the Point Pedernales Project is in Permit to Operate 6708 for the Lompoc Oil and Gas Plant.

8.0 Lead Agency Permit Consistency

To the best of the District's knowledge, no other governmental agency's permit requires air quality mitigation.

TABLE OF CONTENTS

9.A STANDARD A	DMINISTRATIVE CONDITIONS
	Constitute With Domit Constitutions 49
Condition A.1	Compliance With Permit Conditions48
Condition A.2	Emergency Provisions
Condition A.3	Compliance Plan
Condition A.4	Right of Entry
Condition A.5	Permit Life49
Condition A.6	Payment of Fees
Condition A.7	Prompt Reporting of Deviations50
Condition A.8	Reporting Requirements/Compliance Certification50
Condition A.9	Federally-Enforceable Conditions
Condition A.10	Recordkeeping Requirements50
Condition A.11	Conditions for Permit Reopening
	Grounds for Revocation
	Consistency with Analysis
	Severability
	Compliance
Condition 1110	comprisition
9.B GENERIC CON	NDITIONS
Condition B.1	Circumvention (Rule 301)
Condition B.2	Visible Emissions (Rule 302)
Condition B.3	Nuisance (Rule 303)
Condition B.4	Specific Contaminants (Rule 309)
Condition B.5	Organic Solvents (Rule 317)
Condition B.6	Metal Surface Coating Thinner and Reducer (Rule 322) 52
Condition B.7	Architectural Coatings (Rule 323.I)
Condition B.8	Disposal and Evaporation of Solvents (Rule 324)
Condition B.9	
	Emissions of NOx From Water Heaters and Boilers (Rule 360)52
	Boilers, Steam Generators, and Process Heaters (Rule 361)52
	Emergency Episode Plans (Rule 603)
	Adhesives and Sealants (Rule 353)
	Oil and Natural Gas Production MACT53
Condition B.14	CARB Registered Portable Equipment53
9.C REQUIREMEN	TS AND EQUIPMENT SPECIFIC CONDITIONS53
Condition C.1	Petroleum Storage and Processing Tanks 53
Condition C.2	Fugitive Hydrocarbon Component
Condition C.3	Steam Generators
Condition C.4	Best Available Control Technology (BACT)60
Condition C.5	Minimization of Atmospheric Releases
Condition C.6	Source Testing
Condition C.7	Semi-Annual Monitoring/Compliance Verification Reports63
Condition C.8	Requirements for Produced Gas
Condition C.9	Documents Incorporated by Reference
	Solvent Usage

Condition C.11	Emission Offsets	65
9.D DISTRICT-ON	ILY CONDITIONS	66
Condition D.1	Condition Acceptance	66
Condition D.2	Facility Throughput Limitations;	67
Condition D.3	Abrasive Blasting Equipment	67
Condition D.4	Process Stream Sampling and Analysis	67
Condition D.5	Annual Compliance Verification Reports	67
Condition D.6	Mass Emission Limitations	67
Condition D.7	GHG Emission Standards for Crude Oil and Gas Facilities	67
Condition D.8	CARB GHG Regulation Recordkeeping	68
Condition D.9	CARB GHG Regulation Reporting	68

9.0 Permit Conditions

This section lists the applicable permit conditions for the Newlove Lease. Section A lists the standard administrative conditions. Section B lists 'generic' permit conditions, including emission standards, for all equipment in this permit. Section C lists conditions affecting specific equipment. Section D lists non-federally-enforceable (i.e., District only) permit conditions. Conditions listed in Sections A, B and C are enforceable by the USEPA, the District, the State of California and the public. Conditions listed in Section D are enforceable only by the District and the State of California. Where any reference contained in Sections 9.A, 9.B or 9.C refers to any other part of this permit, that part of the permit referred to is federally-enforceable. In case of a discrepancy between the wording of a condition and the applicable federal or District rule(s), the wording of the rule shall control.

For the purposes of submitting compliance certifications or establishing whether or not a person has violated or is in violation of any standard in this permit, nothing in the permit shall preclude the use, including the exclusive use, of any credible evidence or information, relevant to whether a source would have been in compliance with applicable requirements if the appropriate performance or compliance test had been performed.

9.A Standard Administrative Conditions

The following federally-enforceable administrative permit conditions apply to the Newlove Lease:

A.1 **Compliance with Permit Conditions.**

- (a) The permittee shall comply with all permit conditions in Sections 9.A, 9.B and 9.C.
- (b) This permit does not convey property rights or exclusive privilege of any sort.
- (c) Any permit noncompliance constitutes a violation of the Clean Air Act and is grounds for enforcement action; for permit termination, revocation and re-issuance, or modification; or for denial of a permit renewal application.
- (d) It shall not be a defense for the permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.
- (e) A pending permit action or notification of anticipated noncompliance does not stay any permit condition.
- (f) Within a reasonable time period, the permittee shall furnish any information requested by the Control Officer, in writing, for the purpose of determining:
 - (i) compliance with the permit, or
 - (ii) whether or not cause exists to modify, revoke and reissue, or terminate a permit or for an enforcement action. [*Re: 40 CFR Part 70.6, District Rules 1303.D.1*]

(g) In the event that any condition herein is determined to be in conflict with any other condition contained herein, then, if principles of law do not provide to the contrary, the condition most protective of air quality and public health and safety shall prevail to the extent feasible.

A.2 Emergency Provisions. Revoked.

A.3 Compliance Plan.

- (a) The permittee shall comply with all federally-enforceable requirements that become applicable during the permit term, in a timely manner, as identified in the Compliance Plan.
- (b) For all applicable equipment, the permittee shall implement and comply with any specific compliance plan required under any federally-enforceable rules or standards. [*Re: District Rule 1302.D.2*]
- A.4 **Right of Entry.** The Regional Administrator of USEPA, the Control Officer, or their authorized representatives, upon the presentation of credentials, shall be permitted to enter upon the premises where a Part 70 Source is located or where records must be kept:
 - (a) To inspect the stationary source, including monitoring and control equipment, work practices, operations, and emission-related activity;
 - (b) To inspect and duplicate, at reasonable times, records required by this Permit to Operate;
 - (c) To sample substances or monitor emissions from the source or assess other parameters to assure compliance with the permit or applicable requirements, at reasonable times. Monitoring of emissions can include source testing. [*Re: District Rule 1303.D.2*]
- A.5 **Permit Life.** The Part 70 permit shall become invalid three years from the date of issuance unless a timely and complete renewal application is submitted to the District. Any operation of the source to which this Part 70 permit is issued beyond the expiration date of this Part 70 permit and without a valid Part 70 operating permit (or a complete Part 70 permit renewal application) shall be a violation of the CAAA, § 502(a) and 503(d) and of the District rules.

The permittee shall apply for renewal of the Part 70 permit not later than 6-months before the date of the permit expiration. Upon submittal of a timely and complete renewal application, the Part 70 permit shall remain in effect until the Control Officer issues or denies the renewal application. [*Re: District Rule 1304.D.1*]

- A.6 **Payment of Fees.** The permittee shall reimburse the District for all its Part 70 permit processing and compliance expenses for the stationary source on a timely basis. Failure to reimburse on a timely basis shall be a violation of this permit and of applicable requirements and can result in forfeiture of the Part 70 permit. Operation without a Part 70 permit subjects the source to potential enforcement action by the District and the USEPA pursuant to section 502(a) of the Clean Air Act. [*Re: District Rules 1303.D.1 and 1304.D.11, 40 CFR 70.6*]
- A.7 **Prompt Reporting of Deviations.** The permittee shall submit a written report to the District documenting each and every deviation from the requirements of this permit or any applicable federal requirements within 7 days after discovery of the violation, but not later than 180-days after the date of occurrence. The report shall clearly document 1) the probable cause and extent

of the deviation, 2) equipment involved, 3) the quantity of excess pollutant emissions, if any, and 4) actions taken to correct the deviation. The requirements of this condition shall not apply to deviations reported to District in accordance with Rule 505. *Breakdown Conditions*. [District Rule 1303.D.1, 40 CFR 70.6(a) (3)]

- A.8 **Reporting Requirements/Compliance Certification.** The permittee shall submit compliance certification reports to the USEPA and the Control Officer every six months. A paper copy, as well as a complete PDF electronic copy of these reports, shall be in a format approved by the District. These reports shall be submitted on District forms and shall identify each applicable requirement/condition of the permit, the compliance status with each requirement/condition, the monitoring methods used to determine compliance, whether the compliance was continuous or intermittent, and include detailed information on the occurrence and correction of any deviations (excluding emergency upsets) from permit requirement. The reporting periods shall be each half of the calendar year, e.g., January through June for the first half of the year. These reports shall be submitted in accordance with the "Semi-Annual Monitoring/Compliance Verification Report" condition in section 9.C. The permittee shall include a written statement from the responsible official, which certifies the truth, accuracy, and completeness of the reports. [*Re: District Rules 1303.D.1, 1302.D.3, 1303.2.c*]
- A.9 **Federally-Enforceable Conditions.** Each federally-enforceable condition in this permit shall be enforceable by the USEPA and members of the public. None of the conditions in the District-only enforceable section of this permit are federally-enforceable or subject to the public/USEPA review. [*Re: CAAA*, § 502(b)(6), 40 CFR 70.6]
- A.10 **Recordkeeping Requirements.** Records of required monitoring information shall include the following:
 - (a) The date, place as defined in the permit, and time of sampling or measurements;
 - (b) The date(s) analyses were performed;
 - (c) The company or entity that performed the analyses;
 - (d) The analytical techniques or methods used;
 - (e) The results of such analyses; and
 - (f) The operating conditions as existing at the time of sampling or measurement;

The records (electronic or hard copy), as well as all supporting information including calibration and maintenance records, shall be maintained for a minimum of five (5) years from date of initial entry by the permittee and shall be made available to the District upon request. [*Re: District Rule* 1303.D.1.f, 40CFR70.6(a)(3)(ii)(A)]

- A.11 **Conditions for Permit Reopening.** The permit shall be reopened and revised for cause under any of the following circumstances:
 - (a) <u>Additional Requirements</u>: If additional applicable requirements (e.g., NSPS or MACT) become applicable to the source which has an unexpired permit term of three (3) or more years, the permit shall be reopened. Such a reopening shall be completed no later than 18 months after promulgation of the applicable requirement. However, no such reopening is required if the effective date of the requirement is later than the date on which the permit is due to expire, unless the original permit or any of its terms and conditions has been extended. All such re-openings shall be initiated only after a 30-day notice of intent to

reopen the permit has been provided to the permittee, except that a shorter notice may be given in case of an emergency.

- (b) <u>Inaccurate Permit Provisions</u>: If the District or the USEPA determines that the permit contains a material mistake or that inaccurate statements were made in establishing the emission standards or other terms or conditions of the permit, the permit shall be reopened. Such re-openings shall be made as soon as practicable.
- (c) <u>Applicable Requirement</u>: If the District or the USEPA determines that the permit must be revised or revoked to assure compliance with any applicable requirement including a federally-enforceable requirement, the permit shall be reopened. Such re-openings shall be made as soon as practicable.

Administrative procedures to reopen and revise/revoke/reissue a permit shall follow the same procedures as apply to initial permit issuance. Re-openings shall affect only those parts of the permit for which cause to reopen exists.

If a permit is reopened, the expiration date does not change. Thus, if the permit is reopened, and revised, then it will be reissued with the expiration date applicable to the re-opened permit. [*Re:* 40 CFR 70.7, 40 CFR 70.6]

- A.12 **Grounds for Revocation.** Failure to abide by and faithfully comply with this permit or any Rule, Order, or Regulation may constitute grounds for the APCO to petition for permit revocation pursuant to California Health & Safety Code Section 42307 *et seq.*
- A.13 **Consistency with Analysis.** Operation under this permit shall be conducted consistent with all data, specifications and assumptions included with the application and supplements thereof (as documented in the District's project file), and with the District's analyses under which this permit is issued as documented in the Permit Analyses prepared for and issued with the permit.
- A.14 **Severability.** In the event that any condition herein is determined to be invalid, all other conditions shall remain in force.
- A.15 **Compliance.** Nothing contained within this permit shall be construed to allow the violation of any local, State or Federal rule, regulation, ambient air quality standard or air quality increment.

9.B. Generic Conditions

The generic conditions listed below apply to all emission units, regardless of their category or emission rates. In case of a discrepancy between the wording of a condition and the applicable federal or District rule(s), the wording of the rule shall control.

B.1 Circumvention (Rule 301). A person shall not build, erect, install, or use any article, machine, equipment or other contrivance, the use of which, without resulting in a reduction in the total release of air contaminants to the atmosphere, reduces or conceals an emission which would otherwise constitute a violation of Division 26 (Air Resources) of the Health and Safety Code of the State of California or of these Rules and Regulations. This Rule shall not apply to cases in which the only violation involved is of Section 41700 of the Health and Safety Code of the State of California, or of District Rule 303. [*Re: District Rule 301*]

- B.2 **Visible Emissions (Rule 302).** The permittee shall not discharge into the atmosphere from any single source of emission any air contaminants for a period or periods aggregating more than three minutes in any one hour which is:
 - (a) As dark or darker in shade as that designated as No. 1 on the Ringlemann Chart, as published by the United States Bureau of Mines, or
 - (b) Of such opacity as to obscure an observer's view to a degree equal to or greater than does smoke described in subsection B.2.(a) above. [*Re: District Rule 302*]
- B.3 **Nuisance (Rule 303).** No pollutant emissions from any source at the permittee shall create nuisance conditions. Operations shall not endanger health, safety or comfort, nor shall they damage any property or business. [*Re: District Rule 303*]
- B.4 **Specific Contaminants (Rule 309).** The permittee shall not discharge into the atmosphere from any single source sulfur compounds and combustion contaminants (particulate matter) in excess of the applicable standards listed in Sections A through E of Rule 309. [*Re: District Rule 309*].
- B.5 **Organic Solvents (Rule 317).** The permittee shall comply with the emission standards listed in Rule 317.B. Compliance with this condition shall be based on the permittee's compliance with Condition C.5 of this permit. [*Re: District Rule 317*]
- B.6 **Metal Surface Coating Thinner and Reducer (Rule 322).** The use of photochemically reactive solvents as thinners or reducers in metal surface coatings is prohibited. Compliance with this condition shall be based on the permittee's compliance with Condition C.5 of this permit and facility inspections. [*Re: District Rule 322*]
- B.7 Architectural Coatings (Rule 323.I). The permittee shall comply with the coating ROC content and handling standards listed in Section D of Rule 323 as well as the Administrative requirements listed in Section F of Rule 323. Compliance with this condition shall be based on the permittee's compliance with Condition C.5 of this permit and facility inspections. [*Re: District Rules 323, 317, 322, 324*]
- B.8 **Disposal and Evaporation of Solvents (Rule 324).** The permittee shall not dispose through atmospheric evaporation of more than one and a half gallons of any photochemically reactive solvent per day. Compliance with this condition shall be based on the permittee's compliance with Condition C.5 of this permit and facility inspections. [*Re: District Rule 324*]
- B.9 Emissions Of Oxides Of Nitrogen From Large Water Heaters and Small Boilers (Rule 360). This rule applies to any person who supplies, sells, offers for sale, installs, or solicits the installation of any new water heater, boiler, steam generator or process heater for use within the District with a rated heat input capacity greater than or equal to 75,000 Btu/hour up to and including 2,000,000 Btu/hour. There are no new units at this facility that are subject to this rule.
- B.10 **Small Boilers, Steam Generators, and Process Heaters (Rule 361).** The permittee shall comply with the requirements of District Rule 361: *Small Boilers, Steam Generators, and Process Heaters* whenever a new boiler, process heater or other external combustion device is added or an existing unit is replaced.
- B.11 **Emergency Episode Plans (Rule 603).** During emergency episodes, the permittee shall implement the Emergency Episode Plan dated March 30, 1999. [*Reference District Rule 603*]

- B.12 Adhesives and Sealants (Rule 353). The permittee shall not use adhesives, adhesive bonding primers, adhesive primers, sealants, sealant primers, or any other primers, unless the permittee complies with the following:
 - (a) Such materials used are purchased or supplied by the manufacturer or suppliers in containers of 16 fluid ounces or less; or alternately
 - (b) When the permittee uses such materials from containers larger than 16 fluid ounces and the materials are not exempt by Rule 353, Section B.1, the total reactive organic compound emissions from the use of such material shall not exceed 200 pounds per year unless the substances used and the operational methods comply with Sections D, E, F, G, and H of Rule 353. Compliance shall be demonstrated by recordkeeping in accordance with Section B.2 and/or Section O of Rule 353. [*Re: District Rule 353*]
- B.13 Oil and Natural Gas Production MACT. The permittee shall comply with the requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPS) for Oil and Natural Gas Production and Natural Gas Transmission and Storage (promulgated June 17, 1999). At a minimum, the permittee shall maintain records in accordance with 40 CFR Part 63, Subpart A, Section 63.10 (b) (1) and (3). [*Re: 40 CFR 63, Subpart HH*]
- B.14 **CARB Registered Portable Equipment.** State registered portable equipment shall comply with State registration requirements. A copy of the State registration shall be readily available whenever the equipment is at the facility. [*Re: District Rule 202*]

9.C Requirements and Equipment Specific Conditions

This section contains non-generic federally-enforceable conditions, including emissions and operations limits, monitoring, recordkeeping and reporting for each specific equipment group. This section may also contain other non-generic conditions.

C.1 **Petroleum Storage and Processing Tanks.** The following operational limits and restrictions shall apply:

Dev No	Equipment Name; Capacity
Phase I	
109488	Crude Tank T-350, 2,100 bbl capacity
109487	Wash Tank T-340, 5,480 bbl capacity
109489	Reject/Stock Tank T-360, 2,100 bbl capacity
109486	Wastewater Tank T-330, 2,800 bbl capacity
Phase II	
109536	Wash Tank T-640, 5,480 bbl capacity
113561	Drain Tank T-690, 100 bbl capacity
113481	Mobile Sand Bin #1, 5,050 gallon capacity
113482	Mobile Sand Bin #2, 5,050 gallon capacity

(a) <u>Emission Limits</u>: Mass emissions from the tanks shall not exceed the limits listed in Tables 5.1-3 and 5.1-4.

- (b) <u>Operational Limits</u>. The following operational limits shall apply:
 - (i) *Throughput Limitation*. The following throughput limitations shall not be exceeded:

Phase 1 and Phase 2 oil production ^(a)	3,000	bbl/day
Phase 1 and Phase 2 gas production ^(a)	1,020	mscfd

- a. Calculated as monthly production divided by the number of producing days.
- (ii) VRU Use: All production storage tanks shall be connected to a vapor recovery/gas collection (VRGC) system. The VRGC system shall be in operation when the equipment connected to the VRGC system at the facility is in use. The VRGC system includes piping, valves, and flanges associated with the VRGC system. The VRGC system shall be maintained and operated to minimize the release of emissions from all systems, including pressure relief valves and gauge hatches.
- (c) <u>Monitoring</u>: The following monitoring requirements shall apply:
 - (i) The volumes of oil (bbls) produced from each production phase shall be measured through the use of calibrated meters or through the use of a District-approved alternate method. The meters shall be calibrated according to manufacturer's specifications and the calibration records shall be made available to the District upon request.
 - (ii) On an annual basis, at Wash Tank T-340 (District Device No. 109487), or other storage tanks if requested in writing by the District, (1) the API gravity shall be measured and recorded, and (2) the true vapor pressure (TVP) at the maximum expected temperature of the crude oil shall be measured by using ASTM method D 323-82 (if API gravity is equal to or greater than 20 degrees) or the HOST Method (if API gravity is under 20 degrees), and recorded. Samples of crude oil shall be obtained from the initial crude oil storage tank or an active flow line into that tank or from the tank, provided that there is an active flow of crude oil into the tank.

If ASTM D323 applies, the TVP at the maximum expected temperature shall be calculated from the Reid vapor pressure in accordance with API Bulletin 2518, or equivalent Reid/true vapor pressure correlation. The calculated true vapor pressure shall be based on the maximum expected operating temperature of the initial crude oil storage tank.

- (d) <u>Recordkeeping</u>: The following records shall be maintained by the permittee and shall be made available to the District upon request:
 - (i) The volume of oil produced from each project phase each month and the number of days that oil was produced through each tank battery.
 - (ii) On an annual basis, the API gravity and true vapor pressure.
- (e) <u>Reporting</u>: On a semi-annual basis, a report detailing the previous six-month's activities shall be provided to the District. The report must list all data required by the *Semi-Annual Compliance Verification Reports* condition of this permit.

C.2 **Fugitive Hydrocarbon Components.** The following operational limits and restrictions shall apply:

District No.	Equipment	
Phase I Compo	onents	
-	6,821 gas/lt liquid components	
Phase II Comp	onents	
-	3,375 gas/lt liquid components	
SG-400 Compo	SG-400 Components	
-	15,703 gas/lt liquid components	

- (a) <u>Emission Limits</u>: Mass emissions from gas/light liquid service fugitive components shall not exceed the daily, quarterly and yearly ROC limits listed in Table 5.1-5.
- (b) <u>Operational Limits</u>: The following operational limits shall apply:
 - (i) Fugitive hydrocarbon emissions shall be computed quarterly and annually consistent with District Policy and Procedure 6100.072.1998 Using Correlation Equation Methodology to Estimate Mass ROC Emissions at O&G Facilities (CE Method P&P). The Screening Value Range Factor (SVRF) from the CE Method P&P, Table SVRF-1 shall be used to calculate fugitive emissions of THC for each fugitive component. The appropriate SVRF for each component is determined by service (gas/light liquid and oil), component type (valves, pump seals/compressor seals, others, connectors, flanges, and open-ended lines), and by the THC compound screening values (<10K for non-leaking components and ≥ 10K for leaking components). ROC/THC ratios are assigned to each component from District Policy and Procedure 6100.061.1998 Determination of Fugitive Hydrocarbon Emissions at Oil and Gas Facilities Through the Use of Facility Component Counts.</p>
 - (ii) A component inventory for each phase of the project shall be maintained according to provisions of the District CE Method P&P. The inventory shall be separated into component categories (valves, flanges, connectors, compressor seals, pump seals, pressure relief devices (PRD), open-ended lines, other) and service (gas/light liquid and oil).
 - (iii) SVRFs for leaking components shall be applied for the entire monthly monitoring period and fugitive ROC emissions calculated by month.
 - (iv) Fugitive component ROC emissions shall be totaled on a calendar quarter basis and compared to the quarterly ROC fugitive component emissions limit established in Table 5.1-5 of this permit. Any calendar quarter total of fugitive component ROC emissions exceeding the quarterly Table 5.1-5 limit is a violation of this permit.
- (c) <u>Monitoring</u>: On a monthly basis, each project fugitive component identified in the fugitive component count required above shall be monitored for leaks.
- (d) <u>Recordkeeping</u>: All inspection and repair records shall be retained at the source for a minimum of five years. The equipment listed in this section are subject to all the recordkeeping requirements listed in District Rule 331.G.

- (e) <u>Reporting</u>: On a semi-annual basis, a report detailing the previous six-month's activities shall be provided to the District. The report must list all data required by the *Semi-Annual Compliance Verification Reports* condition of this permit. [*Re: District Rules 331 and 1303, 40 CFR 70.6*].
- C.3 **Steam Generators.** The following requirements apply to the steam generators:

Dev No	Equipment Name; Size
109530	Steam Generator SG 100, 62.500 MMBtu/hr
109485	Steam Generator SG 300, 62.500 MMBtu/hr
114798	Steam Generator SG 400, 62.500 MMBtu/hr

- (a) <u>Emission Limitations</u>. The mass emissions from the equipment permitted herein shall not exceed the values listed in Tables 5.1-3 and 5.1-4. Compliance shall be based on the operational, monitoring, recordkeeping and reporting conditions of this permit.
 - Steam Generator Oxides of Nitrogen (NO_X) Concentration Emissions Limits.
 Emissions of NO_X (as NO₂) from the steam generators shall not exceed the following NO_x stack concentration:
 - a. <u>Steam Generator ID #109530 and ID #109485 (SG 100 & SG 300)</u>: 9 ppmvd at 3% O₂ or a NO_x stack emission rate of 0.011 lb/MMBtu. Compliance with this condition shall be based on source testing and the monitoring conditions of this permit.
 - b. <u>Steam Generator ID# 114798 (SG 400)</u>: 7 ppmvd at 3% O₂ or a NO_X stack emission rate of 0.009 lb/MMBtu. Compliance with this condition shall be based on source testing and the monitoring conditions of this permit.
 - Steam Generator Reactive Organic Compounds (ROC) Concentration Emissions Limits. Emissions of ROC from each steam generator shall not exceed a ROC stack concentration of 8.5 ppmvd at 3% O₂ or a stack emission rate of 0.004 lb/MMBtu. Compliance with this condition shall be based on source testing and the monitoring conditions of this permit.
 - (iii) Steam Generator Carbon Monoxide (CO) Concentration Emissions Limits. Emissions of CO from each steam generator shall not exceed a CO stack concentration of 26 ppmvd at 3% O₂ or a stack emission rate of 0.019 lb/MMBtu. Compliance with this condition shall be based on source testing and the monitoring conditions of this permit.

- (b) <u>Operational Restrictions</u>. The Steam Generators are subject to the following operational restrictions:
 - (i) *Heat Input Limits*. The hourly, daily and annual heat input limits to each steam generator shall not exceed the values listed below. These limits are based on the design rating of the burners and the annual heat input value as listed in the permit application. Compliance shall be based on data recorded in accordance with permit Conditions and source testing.

Hourly Heat Input	<u>62.500</u>	MMBtu/hour
Daily Heat Input	<u>1500.000</u>	MMBtu/day
Annual Heat Input	<u>547500.000</u>	MMBtu/year

- (ii) Steam Generator Radiant Section Temperature and Residence Time. Except during startup and shutdown not to exceed one hour, during periods when no oil or gas is being produced, or when produced gas is diverted to the Orcutt Hill gas gathering system, each steam generator shall maintain a radiant section temperature of at least 1275 °F. Residence time within the combustion chamber shall be maintained at a minimum of 4.88 seconds. Compliance with this condition shall be based on source testing and the monitoring conditions of this permit.
- (iii) If steam generator burner capacity is not available for the purposes of the destruction of produced gas due to burner upset or breakdown, all produced gas from the production vessels shall be diverted to the Orcutt Hill gas gathering system.
- (iv) Gaseous Fuel Sulfur Limit. The total sulfur content (calculated as H₂S at standard conditions, 60° F and 14.7 psia) of the gaseous fuel burned as fuel in the steam generators at the facility shall not exceed the following:
 - a. <u>PUC gas/Orcutt Hill field gas/Diatomite produced gas</u>: The maximum concentration of total sulfur compounds in all fuel gas to the steam generator (calculated as H₂S at standard conditions, 60 °F and 14.7 psia), shall not exceed 1.36 grains per 100 cubic feet (23 ppm_v).
 - b. All Diatomite Project produced gas and Orcutt Hill Field produced gas to be burned in the project steam generators shall be treated by the SulfaTreat system or an equivalent District approved system.
- (c) <u>Monitoring</u>. The permitted equipment is subject to the following monitoring requirements:
 - (i) The volumes (in standard cubic feet) of (1) PUC quality natural gas (including that blended with Orcutt Hill Field produced gas) and (2) Diatomite project produced gas burned in each steam generator shall be measured through the use of calibrated meters or through the use of a District-approved alternate method. The meters shall be calibrated according to manufacturer's specifications and the calibration records shall be made available to the District upon request.
 - (ii) The higher heating value (HHV in Btu/scf) of the PUC quality natural gas shall be measured annually; the HHV of PUC quality gas blended with Orcutt Hill Field produced gas, and of Diatomite project produced gas combusted in the steam generator, shall be measured quarterly. Measurement shall be in accordance with

ASTM D-3588 or a District-approved method. Records shall be kept on site and made available for inspection by the District upon request.

- (iii) The permittee shall monitor and record the Steam Generator stack concentration of NO_x , CO, and O_2 at least once every month (in which a source test is not performed) using a portable emission monitor that meets District specifications. Monitoring shall not be required if the unit is not in operation, i.e. the unit need not be started solely to perform monitoring. Monitoring shall be performed within 5 days of restarting the unit unless monitoring has been performed within the last month. A portable analyzer reading in excess of the permitted NO_x and CO concentrations shall not be considered a violation of this permit, so long as one of the following actions are taken:
 - a. the unit is shut down within 72 hours of the initial out-of-compliance reading, or,
 - b. the unit is brought into compliance and a follow-up portable analyzer inspection is conducted within 72 hours of the initial out-of-compliance reading.
- (iv) All alternate monitoring parameter emission readings shall be taken with the unit operating at conditions representative of normal operations. The analyzer shall be calibrated, maintained, and operated in accordance with the manufacturer's specifications and recommendations or a protocol approved by the District. Emission readings taken shall be averaged over a 15 consecutive-minute period by either taking a cumulative 15 consecutive-minute sample reading or by taking at least five (5) readings, evenly spaced out over the 15 consecutive-minute period. No determination of compliance shall be established within two hours after a continuous period in which fuel flow to the unit is shut off for 30 minutes or longer, or within 30 minutes after an unscheduled shutdown of the unit.
- (v) *FGR Operating Monitoring.* Each steam generator burner windbox shall be equipped with an oxygen monitor. The burner windbox operating O_2 shall be continuously monitored and the O_2 % value displayed when the steam generator is operating.
- (vi) The temperature of the radiant section of each steam generator shall be continuously measured using a thermocouple or equivalent temperature measurement device approved by the District.
- (vii) The H₂S concentration of Diatomite Project gas treated by the SulfaTreat system and routed to the steam generators shall be measured monthly using colorimetric gas detector tubes. In addition, sampling and lab analysis for total sulfur shall be conducted annually by ASTM 1072 or an alternative District-approved analysis method. Sampling shall occur immediately downstream of the SulfaTreat system or other District approved sampling location.
- (viii) The H₂S concentration of the PUC utility gas blended with Orcutt Hill Field produced gas burned by each steam generator shall be measured weekly using colorimetric gas detector tubes. In addition, sampling and lab analysis for total sulfur shall be conducted quarterly by ASTM 1072 or an alternative District-approved analysis method. Sampling shall occur at the gas blending skid.

- (ix) All monitoring shall be conducted in accordance with the District-approved *Process Monitor Calibration and Maintenance Plan.*
- (d) <u>Recordkeeping</u>. The following records shall be maintained by the permittee and shall be made available to the District upon request:
 - (i) The volume of oil produced from each project phase each month and the number of days that oil was produced through each tank battery.
 - (ii) On an annual basis, the API gravity and true vapor pressure.
 - (iii) The volume of (1) PUC natural gas (including Orcutt Hill Field produced gas when blended) and, (2) Diatomite project produced gas combusted each month (in units of standard cubic feet) in each steam generator and the number of days per month that each steam generator operated.
 - (iv) The H₂S and total sulfur content of fuel gas (i.e., Diatomite Project produced gas and PUC/Orcutt Hill Field produced gas blend).
 - (v) On a quarterly basis the higher heating value (HHV) in Btu/scf of the PUC natural gas/Orcutt Hill Field produced gas blend.
 - (vi) On a quarterly basis, the higher heating value (HHV) of the Diatomite Project produced gas (Btu/scf).
 - (vii) The total sulfur content of the PUC natural gas based on utility gas analyses.
 - (viii) Dates of Sulfa Treat reactant change-out for each vessel.
 - (ix) Records required by the following District Rules: 325.F, 331.G, and 344.G. Also records for Rule 343.F if applicable.
 - (x) Dates, start and end times and total duration of all automatic process shutdowns at V-300 initiated by pressure monitors.
 - (xi) Date and time of any rupture disk inspection required by the initiation of any alarm corresponding to release pressure and a notation whether the disk was found intact or burst. If the rupture disk was found in a burst condition, record the date, start and end times, total time duration, and calculated quantity of uncontrolled produced gas emitted from atmospheric releases at the PSVs.
 - (xii) Date, start and end times, total duration, and calculated quantity of uncontrolled produced gas emitted from atmospheric releases as sensed by any storage tank proximity switch.
 - (xiii) On an annual basis, the amount of coatings and solvents used. This information must be logged for each coating or solvent. The log shall list (for each material) the quantity of material used, the VOC content, whether the material is photochemically reactive per the definition of Rule 102.F, and whether the material was applied to a surface or disposed of. A Material Safety Data Sheet (MSDS), or other product

specification sheet, which specifies the VOC content of the material, shall be maintained with the log. These records may be maintained on a field or lease basis.

- (xiv) On a monthly and quarterly basis, the date, time and results (ppmv TOC) of each fugitive component measurement and the date and time of each repair action triggered per the BACT LDAR thresholds, date of re-inspection and ppmv or dropper-minute reading following repair.
- (xv) Steam Generator Monitoring Records:
 - a. the date and time of NO_x, CO, and O₂ measurements
 - b. the O_2 concentration in percent and the measured NOx and CO concentrations corrected to 3% O_2
 - c. make and model of exhaust gas analyzer
 - d. exhaust gas analyzer calibration records
 - e. description of any corrective action taken to maintain the emissions within the acceptable range
- (e) <u>Reporting</u>: On a semi-annual basis, a report detailing the previous six-month's activities shall be provided to the District. The report must list all data required by the *Semi-Annual Compliance Verification Reports* condition of this permit.
- C.4 **Best Available Control Technology (BACT).** The permittee shall apply emission control technology and plant design measures that represent Best Available Control Technology ("BACT") to the operation of the Diatomite equipment/facilities as described in this permit and the District's Permit Evaluation for this permit. Table 5.7 and the Emissions, Operational, Monitoring, Recordkeeping and Reporting Conditions of this permit define the specific control technology and performance standard emission limits for BACT. The BACT shall be in place, and shall be operational at all times, for the life of the project. BACT related monitoring, recordkeeping and reporting requirements are defined in those specific permit conditions.
- C.5 **Minimization of Atmospheric Releases.** The following requirements shall apply to minimize atmospheric releases:
 - (i) Process monitors shall measure process stream pressures upstream of PSV-V300A, PSV-V300B, PSV-H305A, PSV-V315, PSV-V380A and PSV-V380B. Output signals from each monitor shall be transmitted to the project control room and shall initiate operator alarm or process shutdown at pre-set levels listed below.
 - (ii) A proximity switch shall be installed on each production storage tank pressure relief valve and hatch with the output signal sent to a District approved recording device to document the duration of any atmospheric releases of production gas.
 - (iii) The process shall be operated to prevent routine releases of uncontrolled production gas to the atmosphere from any pressure safety valve (PSV). PSV-H305A, PSV-V315, PSV-V380A, and PSV-V380B each shall be fitted with a rupture disk with a disk rupture setting at the release pressure shown in the table below. In order to avoid process upsets resulting

in atmospheric relief venting; pressure monitors shall measure the process stream pressure at vessels V-300, V-380A, and V-380B.

If pressure sensors measure any alarm pressure or automatic shutdown pressure at V-300, V-380A or V-380B, the following shall be initiated:

- a. <u>Pressure monitor output measures an alarm pressure</u>: Process control room alarm shall be triggered at the alarm pressure specified in the *Process Monitor Calibration and Maintenance Plan*. Operators shall take action to return the plant to normal operating pressures.
- b. <u>Pressure monitor output measures an automatic shutdown pressure</u>: Process control room alarm shall be triggered at the automatic shutdown pressure specified in the *Process Monitor Calibration and Maintenance Plan*. An automatic process shutdown shall occur preventing production fluid and gas from entering V-300 at the inlet to V-300 and at Well Manifolds M-410 and M-420.

If pressure sensors measure any release pressure shown in the table below at V-300, H-305, V-315, V-380A, and V-380B, the following shall be initiated:

c. Pressure monitor output measures a release pressure of 150 psig at V-300, H-305, V-315 or 100 psig at V-380A or V-380B: Process control room alarm shall be triggered. A process shutdown shall occur preventing production fluid and gas from entering V-300 at the inlet to V-300 and at Well Manifolds M-410 and M-420.

Any pressure sensor output at vessels V-300, V-380A, or V-380B at or above the alarm pressure or the automatic shutdown pressure as specified in the *Process Monitor Calibration and Maintenance Plan*, or any PSV pressure sensor output at vessels V-300, H-305, V-315, V-380A, or V-380B at or above the release pressure in the table below shall be recorded and an alarm shall be triggered immediately to notify plant operators. The permittee shall notify the District of any release pressure alarm via telephone or email (<u>enfr@sbcapcd.org</u>) as soon as possible on the day of the alarm but no later than four hours after the start of the next business day).

Any PSV pressure transmitter located downstream of a rupture disk measuring a pressure in excess of atmospheric pressure shall be deemed as evidence of a burst rupture disk and evidence of an uncontrolled production gas release to the atmosphere. The duration of the release shall be defined as the duration of the release alarm at the PSV. Any rupture disk deemed in a burst condition shall be replaced within 24 hours of the onset of the release pressure alarm.

Permittee shall maintain a log of the date and time of all release pressure alarms triggered. The log shall include the time of any vessel release to the atmosphere, the date of rupture disk replacement after a release, the duration and quantity of any gas released to the atmosphere as indicated by the downstream pressure transmitter and any corrective action taken. The log shall be available upon District request.

Vessel	PSV ID	Release	Release
		Pressure	Point
		(psig)	
V - 300	PSV-V300A	150	Wash Tank
V - 300	PSV-V300B	150	Wash Tank
H - 305	PSV-H305A	150	Atmosphere
V - 315	PSV-V315	150	Atmosphere
V - 380A	PSV-V380A	100	Atmosphere
V - 380B	PSV-V380B	100	Atmosphere

- (iv) <u>Well Operation and Well Shutdown</u>. Steamed wells shall not be blown down to atmosphere. All produced steam, gas, and oil shall be routed to the production gas gathering system. Automatic well shutdown shall occur at or above a process stream pressure of 90 psig at the M-410 and M-420 Well Manifold. Well shutdown events (date and duration) shall be logged. The log shall be available upon District request.
- C.6 **Source Testing.** The following source testing provisions shall apply:
 - (a) The permittee shall conduct source testing of air emissions and process parameters listed in Table 5.6 of this permit. Source testing shall be performed annually using February as the source test anniversary date for Devices #109530 and #109458 and October as the source test anniversary date for Device #114798), respectively. More frequent source testing may be required if the equipment does not comply with permitted limitations or if other compliance problems, as determined by the District, occur.
 - (b) The permittee shall submit a written source test plan to the District for approval at least thirty (30) days prior to initiation of each source test. The source test plan shall be prepared consistent with the District's Source Test Procedures Manual (revised May 1990 and any subsequent revisions). The permittee shall obtain written District approval of the source test plan prior to commencement of source testing. The District shall be notified at least ten (10) calendar days prior to the start of source testing activity to arrange for a mutually agreeable source test date when District personnel may observe the test.
 - (c) Source test results shall be submitted to the District within forty-five (45) calendar days following the date of source test completion and shall be consistent with the requirements approved within the source test plan. Source test results shall document the permittee's compliance status with BACT requirements, mass emission rates in Table 1 and applicable permit conditions, rules and NSPS (if applicable). All District costs associated with the review and approval of all plans and reports and the witnessing of tests shall be paid by the permittee as provided for by District Rule 210.
 - (d) A source test for an item of equipment shall be performed on the scheduled day of testing (the test day mutually agreed to) unless circumstances beyond the control of the operator prevent completion of the test on the scheduled day. Such circumstances include mechanical malfunction of the equipment to be tested, malfunction of the source test equipment, delays in source test contractor arrival and/or set-up, or unsafe conditions on site. Except in cases of an emergency, the operator shall seek and obtain District approval before deferring or discontinuing a scheduled test, or performing maintenance on the equipment item on the scheduled test day. If the test cannot be completed on the scheduled day, then the test shall be rescheduled for another time with prior authorization by the

District. Once the sample probe has been inserted into the exhaust stream of the equipment unit to be tested (or extraction of the sample has begun), the test shall proceed in accordance with the approved source test plan. In no case shall a test run be aborted except in the case of an emergency or unless approval is first obtained from the District. Failing to perform the source test of an equipment item on the scheduled test day without a valid reason and without District's authorization shall constitute a violation of this permit. If a test is postponed due to an emergency, written documentation of the emergency event shall be submitted to the District by the close of the business day following the scheduled test day.

- (e) The timelines in (a), (b), and (c) above may be extended for good cause provided a written request is submitted to the District at least three (3) days in advance of the deadline, and approval for the extension is granted by the District.
- C.7 **Semi-Annual Monitoring/Compliance Verification Reports.** The permittee shall submit a report to the District every six months to verify compliance with the emission limits and other requirements of this permit. The reporting periods shall be each half of the calendar year, e.g., January through June for the first half of the year. These reports shall be submitted by September 1 and March 1, respectively, each year, and shall be in a format approved by the District, with one hard copy and one PDF copy. All logs and other basic source data not included in the report shall be available to the District upon request. The second report shall also include an annual report for the prior four quarters. The report shall include the following information:
 - (a) Rule 331 fugitive hydrocarbon I&M program data:
 - inspection summary.
 - record of leaking components.
 - record of leaks from critical components.
 - record of leaks from components that incur five repair actions within a continuous 12-month period.
 - record of component repair actions including dates of component re-inspections.
 - (b) Surface Coating and Solvent Usage: On a monthly basis the amount of surface coating/solvent used; the percentage of ROC by weight (as applied); the surface coating/solvent density; the amount of solvent reclaimed; whether the surface coating/solvent is photochemically reactive; and, the resulting emissions of ROC and photochemically reactive surface coatings/solvents to the atmosphere in units of pounds per month.
 - (c) The volume of oil produced from each phase each month and year, and the number of days each month that oil was produced through each tank battery.
 - (d) API gravity, true vapor pressure and storage temperature of each organic liquid tank required to be measured and recorded.
 - (e) The volume of PUC natural gas (including Orcutt Hill Field produced gas when blended) and Diatomite project produced gas combusted each month (in units of standard cubic feet) in each steam generator and the number of days per month that the steam generator operated.

- (f) On a quarterly basis the higher heating value (HHV) in Btu/scf of the PUC natural gas/Orcutt Hill Field produced gas blend.
- (g) On a quarterly basis, the higher heating value (HHV) in Btu/scf of the Diatomite Project produced gas.
- (h) The results of all H_2S and total sulfur measurements of gas treated by the SulfaTreat system, and of gas burned in each steam generator.
- (i) Dates, start and end times and total hour duration of all automatic process shutdowns at V-300 initiated by pressure monitors.
- (j) Date, start and end times, total duration, and calculated quantity of uncontrolled produced gas emitted from atmospheric releases as sensed by any storage tank proximity switch.
- (k) Date and time of any rupture disk inspection that found any rupture disk listed in permit Condition C.6 in a burst condition and the resultant duration of any gas released to the atmosphere and the calculated amount of uncontrolled production gas (in scf and pounds of ROC) released to the atmosphere.
- By month, number of components by category inspected, number of leaks by component category ≥ 10K ppmv total hydrocarbons, dates and leak repair method for each component.
- (m) On an annual basis, a log showing the amount of all coatings and solvents used. Reporting may be included in the annual stationary source coating and solvents report.
- (n) On a monthly and quarterly basis, the date, time and results (ppmv TOC) of each fugitive component measurement and the date and time of each repair action triggered per the BACT LDAR thresholds, date of re-inspection and ppmv or drop-per-minute reading following repair.
- (o) Annual NOx and ROC emissions from both permitted and exempt equipment.
- (p) Fugitive ROC emissions (tons) by quarter.
- (q) The results of steam generator monitoring, including measured concentrations of NOx, CO, and O₂, as well as records of exhaust gas analyzer calibration.
- C.8 **Requirements for Produced Gas.** The emissions of produced gas shall be controlled at all times using a properly maintained and operated system that directs all produced gas, except gas used in a tank battery vapor recovery system, to one of the following: (a) a system handling gas for fuel, sale, or underground injection; or (b) a flare that combusts reactive organic compounds; or (c) a device with an ROC vapor removal efficiency of at least 90% by weight. The provisions of this condition shall not apply to wells which are undergoing routine maintenance.

C.9 **Documents Incorporated by Reference.** The documents listed below and any District approved updates thereof, are incorporated herein and shall have the full force and effect of a permit condition for this permit. The documents shall be implemented for the life of the Diatomite Project and shall be made available to District inspection staff upon request.

Enhanced Fugitive Hydrocarbon Inspection and Maintenance Plan for the Diatomite Project (District approved March 17, 2009)

Process Monitor Calibration and Maintenance Plan (District approved November 16, 2007, updated June 3, 2009)

Fuel Use Monitoring Plan for the Diatomite Project (District approved July 10, 2015)

- C.10 **Solvent Usage.** The following items are included in this emissions unit category: Photochemically reactive solvents, surface coatings and general solvents.
 - (a) <u>Emission Limits</u>: The following solvent emission limits are federally-enforceable for the entire stationary source:

Solvent Type	lbs/hour	lbs/day
Photochemically Reactive	8 lbs/hour	40 lbs/day
Non-Photochemically Reactive	450 lbs/hour	3,000 lbs/day

- (b) <u>Operational Limits</u>: Use of solvents for cleaning/degreasing shall conform to the requirements of District Rules 317, 322, 323 and 324. Compliance with these rules shall be assessed through compliance with the monitoring, recordkeeping and reporting conditions in this permit and facility inspections.
 - (i) *Reclamation Plan*: The permittee may submit a Plan to the District for the disposal of any reclaimed solvent. If the Plan is approved by the District, all solvent disposed of pursuant to the Plan will not be assumed to have evaporated as emissions into the air and, therefore, will not be counted as emissions from the source. The permittee shall obtain District approval of the procedures used for such a disposal Plan. The Plan shall detail all procedures used for collecting, storing and transporting the reclaimed solvent. Further, the ultimate fate of these reclaimed solvents must be stated in the Plan.
- (c) <u>Monitoring</u>: None.
- (d) <u>Recordkeeping</u>: The permittee shall record in a log the following on a monthly basis for each solvent used: amount used; the percentage of ROC by weight (as applied); the solvent density; the amount of solvent reclaimed for District-approved disposal; whether the solvent is photochemically reactive; and, the resulting emissions to the atmosphere in units of pounds per month and pounds per day. Product sheets (MSDS or equivalent) detailing the constituents of all solvents shall be maintained in a manner readily accessible to District inspection.
- (e) <u>Reporting</u>: On a semi-annual basis, a report detailing the previous six-month's activities shall be provided to the District. The report must list all data required by the *Semi-Annual*

Compliance Verification Reports condition of this permit.

C.11 **Emission Offsets.** PCEC shall offset all oxides of nitrogen (NO_x) and reactive organic compound (ROC) emissions pursuant to Tables 7.3-1, 7.3-2 and 7.3-3 of this permit. Emission reduction credits (ERCs) sufficient to offset the permitted quarterly NO_x and ROC emissions shall be in place for the life of the project.

9.D District-Only Conditions

The following section lists permit conditions that are not federally-enforceable (i.e., not enforceable by the USEPA or the public). However, these conditions are enforceable by the District and the State of California. These conditions have been determined as being necessary to ensure that operation of the facility complies with all applicable local and state air quality rules, regulations and laws. Failure to comply with any of these conditions shall be a violation of District Rule 206, this permit, as well as any applicable section of the California Health & Safety Code.

- D.1 **Condition Acceptance.** Acceptance of this operating permit by the permittee shall be considered as acceptance of all terms, conditions, and limits of this permit.
- D.2 **Facility Throughput Limitations.** Total Newlove Lease production (non-thermal plus Diatomite) shall be limited to a monthly average of 3,000 barrels of (dry) oil per day. The permittee shall record in a log the volumes of oil produced and the actual number of days in production per month. The above limits are based on actual days of operation during the month.
- D.3 **Abrasive Blasting Equipment.** All abrasive blasting activities performed on the Newlove Lease shall comply with the requirements of the California Administrative Code Title 17, Sub-Chapter 6, Sections 92000 through 92530.
- D.4 **Process Stream Sampling and Analysis.** The permittee shall sample analyze the process streams listed in Section 4.9 of this permit according to the methods and frequency detailed in that Section. All process stream samples shall be taken according to District approved ASTM methods and must follow traceable chain of custody procedures.
- D.5 **Annual Compliance Verification Reports.** The permittee shall submit a report to the District, by March 1 of each year containing the information listed below and shall document compliance with all applicable permit requirements. A paper copy, as well as a complete PDF electronic copy of these reports, shall be in a format approved by the District. These reports shall be in a format approved by the District. All logs and other basic source data not included in the report shall be available to the District upon request. Pursuant to Rule 212, the annual report shall include a completed *District Annual Emissions Inventory* questionnaire, or the questionnaire may be submitted electronically via the District website. The report shall include the following information:
 - (a) API gravity, true vapor pressure and storage temperature of the oil.
 - (b) Oil processed through the tank battery along with the number of days per month of production.
 - (c) Breakdowns and variances reported/obtained per Regulation V along with the excess emissions that accompanied each occurrence.

- (d) The ROC and NO_x emissions from all permit exempt activities (tons per year by device/activity).
- (e) The annual emissions totals of all pollutants in tons per year for each emission unit and summarized for the entire facility.
- D.6 **Mass Emission Limitations**. Mass emissions for each equipment item (i.e., emissions unit) shall not exceed the values listed in Table 5.1-3 and 5.1-4. Emissions for the entire facility shall not exceed the total limits listed in Table 5.2.
- D.7 **Greenhouse Gas Emission Standards for Crude Oil and Natural Gas Facilities.** The equipment permitted herein shall be operated in compliance with the California Greenhouse Gas Emission Standards for Crude Oil and Natural Gas Facilities regulation (CCR Title 17, Section 95665 *et. Seq.*).
- D.8 **CARB GHG Regulation Recordkeeping.** The permittee shall maintain at least 5 years of records that document the following:
 - (a) The number of crude oil or natural gas wells at the facility.
 - (b) A list identifying all pressure vessels, tanks, separators, sumps, and ponds at the facility, including the size of each tank and separator in units of barrels.
 - (c) The annual crude oil, natural gas, and produced water throughput of the facility.
 - (d) A list identifying all reciprocating and centrifugal natural gas compressors at the facility.
 - (e) A count of all natural gas powered pneumatic devices and pumps at the facility.
 - (f) A copy of the *Best Practices Management Plan* designed to limit methane emissions from circulation tanks, if applicable.
- D.9 **CARB GHG Regulation Reporting.** On an annual basis, the permittee shall report all throughput data and any updates to the information recorded pursuant to the *CARB GHG Regulation Recordkeeping* Condition above using District Annual Report Form ENF-108. This report shall be submitted by March 1 of each year detailing the previous year's activities.

Air Pollution Control Officer

June 14, 2024

Date

NOTES:

- (a) This permit supersedes PTO 8240-R11
- (b) Permit Reevaluation Due Date: June 1, 2027

10.0 Attachments

- 10.1 Emission Calculation Documentation
- 10.2 Emission Calculation Spreadsheets
- 10.3 IDS Tables
- 10.4 Equipment List
- 10.5 Well List
- 10.6 Fee Statement
- 10.7 Comments on Draft Permit/District Responses

10.1 EMISSION CALCULATION DOCUMENTATION – NEWLOVE LEASE

This attachment contains all relevant emission calculation documentation used for the emission tables in Section 5. Refer to Section 4 for the general equations. Detailed calculation spreadsheets are attached as Attachment 10.2. The letters A - D refer to Tables 5.1-1 and 5.1-2.

Reference A - Combustion Equipment

Steam Generators - See Section 4.0

Greenhouse Gases:

Greenhouse Gas Emissions Computations:

GHG emissions from combustion sources are calculated using emission factors found in Tables C-1 and C-2 of 40 CFR Part 98 and global warming potentials found in Table A-1 of 40 CFR Part 09. CO_2 equivalent emission factors are calculated for CO_2 , CH_4 , and N_2O individually, then summed to calculate a total CO_{2e} emission factor. Annual CO_{2e} emission totals are presented in short tons.

For natural gas combustion the emission factor is:

 $(53.02 \text{ kg CO}_2/\text{MMbtu}) (2.2046 \text{ lb/kg}) = 116.89 \text{ lb CO}_2/\text{MMBtu}$ $(0.001 \text{ kg CH}_4/\text{MMBtu}) (2.2046 \text{ lb/kg})(21 \text{ lb CO}_2\text{e/lb CH}_4) = 0.046 \text{ lb CO}_2\text{e}/\text{MMBtu}$ $(0.0001 \text{ kg N}_2\text{O}/\text{MMBtu}) (2.2046 \text{ lb/kg})(310 \text{ lb CO}_2\text{e/lb N}_2\text{O}) = 0.068 \text{ lb CO}_2\text{e}/\text{MMBtu}$ $Total CO2e/\text{MMBtu} = 116.89 + 0.046 + 0.068 = <u>117.00 \text{ lb CO}_2\text{e}/\text{MMBtu}$ </u>

Reference B - Petroleum Storage Tanks

→ The hourly/daily/annual emissions for the petroleum storage tanks is based on USEPA AP-42 Chapter 7, Liquid Storage Tanks (5th Edition, 2/96)

Reference C - Pits, Sumps and Wastewater Tank

- \rightarrow The maximum operating schedule is in units of hours;
- → Emission calculation methodology based on the CARB/KVB report *Emission Characteristics of Crude Oil Production Operations in California (1/83)*;
- \rightarrow Calculations are based on surface area of emissions noted in the inspector's report;
- \rightarrow All separator units are classified as secondary production and heavy oil service;
- → The THC Speciation is based on CARB profiles # 529, 530, 531, 532; the ROC/TOC ratio is based on the District's guideline "VOC/ROC Emission Factors and Reactivities for Common Source Types" Table dated 07/13/98 (version 1.1).

Reference D - Piping Components Emitting Fugitive ROCs

- \rightarrow Emission factors are based on the *District P&P 6100.060* guidelines.
- → In determining the facility model using the CARB/KVB methodology for fugitive emissions, a default Gas Oil Ratio of 501 scf/bbl was used. This value assumes the worst case model.
- \rightarrow An 80% reduction in fugitive emissions was assumed due to the implementation of a fugitive inspection and maintenance plan pursuant to Rule 331.

Reference E - Solvents

- \rightarrow All solvents not used to thin surface coatings are included in this equipment category
- \rightarrow Daily and annual emission rates assumed to be minimal (0.01 lb/day, 0.01 TPY)

10.2 Emission Calculation Spreadsheets

FIXED ROOF TANK CALCULATION (AP-42: Chapter 7 Method)

Basic Input Data	
liquid {1:G13, 2:G10, 3:G7, 4:C, 5:JP, 6:ker, 7:O2, 8:O6} =	4
liquid TVP =	3
if TVP is entered, enter TVP temperature (°F) =	200
tank heated {yes, no} =	no
if tank is heated, enter temp (°F) =	
vapor recovery system present? {yes, no} =	yes
is this a wash tank? {yes, no} =	yes
will flashing losses occur in this tank? {yes, no} =	yes
breather vent pressure setting range (psi) (def = 0.06):	0.06
Tank Data	
formation (In all) -	

diameter (feet) =		30
capacity (enter barrels in first col, gals will compute)	5,480	230,160
conical or dome roof? {c, d} =		с
shell height (feet) =		32
roof height (def = 1):		1.5
ave liq height (feet):		31
color {1:Spec AI, 2:Diff AI, 3:Lite, 4:Med, 5:Rd, 6:Wh}	=	4
condition {1: Good, 2: Poor} =		1
upstream pressure (psig) (def = 0 when no flashing or	curs):	10

Liquid Data		
	А	В
maximum daily throughput (bopd) =		2,000
Ann thruput (gal): (enter value in Column A if not ma	x PTE)	3.066E+07
RVP (psia):		0.317
°API gravity =		13.3

Computed Values		
roof outage 1 (feet):		0.5
vapor space volume ² (cubic feet):		1.060
turnovers 3:		133.21
turnover factor 4 :		0.39
paint factor ⁵ :		0.68
surface temperatures (°R, °F)		
average ⁶ :	527.2	67.2
maximum 7 :	539	79
minimum ⁸ :	515.4	55.4
product factor ⁹ :		0.75
diurnal vapor ranges		
temperature ¹⁰ (fahrenheit degrees):		47.2
vapor pressure ¹¹ (psia):		0.060864
molecular weight ¹² (lb/lb-mol):		50
TVP ¹³ (psia) [adjusted for ave liquid surface temp]:		0.08279
vapor density 14 (lb/cubic foot):		0.000732
vapor expansion factor ¹⁵ :		0.09
vapor saturation factor ¹⁶ :		0.993461
vented vapor volume (scf/bbl):		12
fraction ROG - flashing losses:		0.308
fraction ROG - evaporative losses:		0.885

•

Attachment Permit: Date: Tank: Name: Filename: District: Version:

PRINT

A PTO 8240-R11 ⁷03/26/21 Wash Tank (Diatomite Project)

Santa Barbara Tank-2b.xls

Paint Factor Matrix paint condition		
paint color	good	poor
spec alum	0.39	0.49
diff alum	0.60	0.68
lite grey	0.54	0.63
med grey	0.68	0.74
red	0.89	0.91
white	0.17	0.34

Molecular Weight Matrix		
liquid	mol wt	
gas rvp 13	62	
gas rvp 10	66	
gas rvp 7	68	
crude oil	50	
JP -4	80	
jet kerosene	130	
fuel oil 2	130	
fuel oil 6	190	

Adjusted TVP Matrix		
liquid	TVP value	
gas rvp 13	7.908	
gas rvp 10	5.56	
gas rvp 7	3.932	
crude oil	0.08279	
JP -4	1.516	
jet kerosene	0.0103	
fuel oil 2	0.009488	
fuel oil 6	0.0000472	

RVP Matrix		
RVP value		
13		
10		
7		
0.439331639		
2.7		
0.029		
0.022		
0.00019		

Long-Term VRU_Eff = 95.00% Short-Term VRU_Eff =

95.00%

Emissions	Uncontrolled ROC emissions			Controlled ROC emissions		
	lb/hr	lb/day	ton/year	lb/hr	lb/day	ton/year
breathing loss ¹⁷ =	0.00	0.06	0.01	0.00	0.00	0.00056
working loss 18 =	0.00	0.00	0.00	0.00	0.00	0.00000
flashing loss 19 =	0.23	5.41	0.99	0.01	0.27	0.04937
TOTALS =	0.23	5.47	1.00	0.0114	0.27	0.05

FIXED ROOF TANK CALCULATION (AP-42: Chapter 7 Method)

Basic Input Data	
liquid {1:G13, 2:G10, 3:G7, 4:C, 5:JP, 6:ker, 7:O2, 8:O6} =	4
liquid TVP =	1.8
if TVP is entered, enter TVP temperature (°F) =	200
tank heated {yes, no} = if tank is heated, enter temp (°F) =	no
vapor recovery system present? {yes, no} =	yes
is this a wash tank? {yes, no} =	no
will flashing losses occur in this tank? {yes, no} =	yes
breather vent pressure setting range (psi) (def = 0.06):	0.4

В
PTO 8240-R11
03/26/21
Crude Tank (Diatomite)
Phase 1
Santa Barbara
Tank-2b.xls

PRINT

Tank Data		
diameter (feet) =		25
capacity (enter barrels in first col, gals will compute)	2,100	88,200
conical or dome roof? {c, d} =		с
shell height (feet) =		24
roof height (def = 1):		2.5
ave liq height (feet):		12
color {1:Spec AI, 2:Diff AI, 3:Lite, 4:Med, 5:Rd, 6:Wh	} =	4
condition {1: Good, 2: Poor} =		1
upstream pressure (psig) (def = 0 when no flashing o	occurs):	10

Liquid Data		
	А	В
maximum daily throughput (bopd) =		1,500
Ann thruput (gal): (enter value in Column A if not ma	X PTE)	2.300E+07
RVP (psia):		0.317
°API gravity =		13.3

Computed Values		
roof outage 1 (feet):		0.8
vapor space volume ² (cubic feet):		6,283
turnovers ³ :		260.71
turnover factor ⁴ :		0.28
paint factor ⁵ :		0.68
surface temperatures (°R, °F)		
average 6:	527.2	67.2
maximum 7 :	539	79
minimum ⁸ :	515.4	55.4
product factor 9:		0.75
diurnal vapor ranges		
temperature ¹⁰ (fahrenheit degrees):		47.2
vapor pressure ¹¹ (psia):		0.060864
molecular weight ¹² (lb/lb-mol):		50
TVP ¹³ (psia) [adjusted for ave liquid surface temp]:		0.08279
vapor density ¹⁴ (lb/cubic foot):		0.000732
vapor expansion factor ¹⁵ :		0.066
vapor saturation factor ¹⁶ :		0.946822
vented vapor volume (scf/bbl):		12
fraction ROG - flashing losses:		0.308
fraction ROG - evaporative losses:		0.885

•

Paint Factor Matrix			
	paint cor	ndition	
paint color	good	poor	
spec alum	0.39	0.49	
diff alum	0.60	0.68	
lite grey	0.54	0.63	
med grey	0.68	0.74	
red	0.89	0.91	
white	0.17	0.34	

Molecular Weight Matrix		
liquid	mol wt	
gas rvp 13	62	
gas rvp 10	66	
gas rvp 7	68	
crude oil	50	
JP -4	80	
jet kerosene	130	
fuel oil 2	130	
fuel oil 6	190	

Adjusted 1	VP Matrix	RVF	RVP Matrix	
liquid	TVP value	liquid	RVP value	
gas rvp 13	7.908	gas rvp 13	13	
gas rvp 10	5.56	gas rvp 10	10	
gas rvp 7	3.932	gas rvp 7	7	
crude oil	0.08279	crude oil	0.24508459	
JP -4	1.516	JP -4	2.7	
jet kerosene	0.0103	jet keroser	0.029	
fuel oil 2	0.009488	fuel oil 2	0.022	
fuel oil 6	0.0000472	fuel oil 6	0.00019	

Long-Term VRU_Eff =	95.00%
Short-Term VRU_Eff =	95.00%

Emissions	Uncontrol	led ROC	emissions	Controlled	ROC en	nissions
	lb/hr	lb/day	ton/year	lb/hr	lb/day	ton/year
breathing loss ¹⁷ =	0.01	0.25	0.05	0.00	0.01	0.00
working loss ¹⁸ =	0.05	1.15	0.21	0.00	0.06	0.01
flashing loss ¹⁹ =	0.17	4.06	0.74	0.01	0.20	0.04
TOTALS =	0.23	5.47	1.00	0.01	0.27	0.05

FIXED ROOF TANK CALCULATION (AP-42: Chapter 7 Method)

Tank Data

RVP (psia):

turnovers ³ : turnover factor ⁴ :

paint factor ⁵ :

average 6

maximum 7

minimum⁸:

product factor 9 :

`

°API gravity =

Computed Values

surface temperatures (°R, °F)

diurnal vapor ranges temperature ¹⁰ (fahrenheit degrees):

TVP ¹³ (psia) [adjusted for ave liquid surface temp]: vapor density ¹⁴ (lb/cubic foot): vapor expansion factor ¹⁵ : vapor saturation factor ¹⁶ :

vapor pressure ¹¹ (psia): molecular weight ¹² (lb/lb-mol):

vented vapor volume (scf/bbl): fraction ROG - flashing losses: fraction ROG - evaporative losses:

roof outage 1 (feet): vapor space volume 2 (cubic feet):

Basic Input Data	
liquid {1:G13, 2:G10, 3:G7, 4:C, 5:JP, 6:ker, 7:O2, 8:O6} =	4
liquid TVP =	3
if TVP is entered, enter TVP temperature (°F) =	200
tank heated {yes, no} =	no
if tank is heated, enter temp (°F) =	
vapor recovery system present? {yes, no} =	yes
is this a wash tank? {yes, no} =	no
will flashing losses occur in this tank? {yes, no} =	yes
breather vent pressure setting range (psi) (def = 0.06):	0.4

Attachment: Permit: Date: Tank: Name: Filename:	C PTO 8240-R11 03/25/21 Reject Tank (Diatomite)
District:	Santa Barbara
Version:	Tank-2b.xls
PRINT	

diameter (feet) =		25
capacity (enter barrels in first col, gals will compute) =	2,100	88,200
conical or dome roof? {c, d} =		с
shell height (feet) =		24
roof height (def = 1):		2.5
ave liq height (feet):		6
color {1:Spec AI, 2:Diff AI, 3:Lite, 4:Med, 5:Rd, 6:Wh} =		4
condition {1: Good, 2: Poor} =		1
upstream pressure (psig) (def = 0 when no flashing occurs):		10
Liquid Data		
•	А	В
maximum daily throughput (bopd) =		1,500
Ann thruput (gal): (enter value in Column A if not max PTE)		2.300E+07
D) (D (r sis)		0.017

Pa	int Factor Matrix		
	paint condition		
paint color	good	poor	
spec alum	0.39	0.49	
diff alum	0.60	0.68	
lite grey	0.54	0.63	
med grey	0.68	0.74	
red	0.89	0.91	
white	0.17	0.34	

Daint Easter Matrix

0.317

13.3

0.8

9,228 260.71

0.28

0.68

67.2

79

55.4

0.75

47.2

50

0.060864

0.08279 0.000732 0.066

0.923794

12 0.308

0.885

Molecular Weight Matrix		
liquid	mol wt	
gas rvp 13	62	
gas rvp 10	66	
gas rvp 7	68	
crude oil	50	
JP -4	80	
jet kerosene	130	
fuel oil 2	130	
fuel oil 6	190	

Adjusted TVP Matrix		
liquid	TVP value	
gas rvp 13	7.908	
gas rvp 10	5.56	
gas rvp 7	3.932	
crude oil	0.08279	
JP -4	1.516	
jet kerosene	0.0103	
fuel oil 2	0.009488	
fuel oil 6	0.0000472	

RVP Matrix			
liquid	RVP value		
gas rvp 13	13		
gas rvp 10	10		
gas rvp 7	7		
crude oil	0.439331639		
JP -4	2.7		
jet kerosene	0.029		
fuel oil 2	0.022		
fuel oil 6	0.00019		

Long-Term VRU_Eff =	95.00%
Short-Term VRU_Eff =	95.00%

Emissions Uncontro		led ROC emissions		Controlled ROC emissions		issions
	lb/hr	lb/day	ton/year	lb/hr	lb/day	ton/year
breathing loss ¹⁷ =	0.02	0.36	0.07	0.00	0.02	0.00
working loss ¹⁸ =	0.05	1.15	0.21	0.00	0.06	0.01
flashing loss ¹⁹ =	0.17	4.06	0.74	0.01	0.20	0.04
TOTALS =	0.23	5.58	1.02	0.01	0.28	0.05

527.2

539

515.4

0.0060 lb/MMBtu 0.0060 lb/MMBtu 0.0090 lb/MMBtu 0.0040 lb/MMBtu 0.0190 lb/MMBtu

0.0040 lb/MMBtu

Ib/day TPY

16.50 3.01

lb/hr

0.69

23 ppmvd as H2S - wt. % N

DATA

Permit No.	PTO 82/0_P11	
Owner/Operator		
Facility/Lease		
Boiler Type		
Boiler Mfg.	Esvs	
Boiler Model No.	,	
Boiler Serial/ID No.		
Boiler Horsepower		Bhp
Burner Type	Gas, Ult Low Nox	
Burner Mfg.	, No Am	
Burner Model No.	4231G-LE	
Max. Firing Rate of Burner		MMBtu/hr
Max. Annual Heat Input	547,500.000	MMBtu/yr
Daily Operating schedule		hrs/day
Yearly Load factor (%)		%
Fuel Type	Natural gas	
High Heating Value	1,050	Btu/scf
Sulfur Content of Fuel	23	ppmvd as
Nitrogen Content of Fuel	-	wt. % N
	a	
Boiler Classification	Commercial	
Firing Type	Other Type	
PM Emission Factor		lb/MMBtu
PM ₁₀ Emission Factor	. 0.0060	lb/MMBtu
NO _x Emission Factor	0.0090	lb/MMBtu
SO _x Emission Factor	0.0040	lb/MMBtu

RESULTS

`

Nitrogen Oxides (as NO ₂)
Sulfur Oxides (as SO ₂)
PM ₁₀
Total Suspended Particulate (PM)
Carbon Monoxide
Reactive Organic Compounds (ROC)

CO Emission Factor ROC Emission Factor

 0.23	5.55	1.01
 0.38	9.00	1.64
 0.38	9.00	1.64
 1.19	28.50	5.20
 0.25	5.93	1.08
 62.500	MMBtu/hr	

Hourly Heat Release	62.500	MMBtu/hr
Daily Heat Release	1,500.000	MMBtu/day
Annual Heat Release	547,500.000	MMBtu/yr
Rule 342 Applicability	547.5	Billion Btu/yr

Attachment: E

BOILER / STEAM GENERATOR CALCULATION WORKSHEET (ver. 6.0)

DATA

	Permit No.	PTO 8240-R11		
	Owner/Operator			
	Facility/Lease			
	Boiler Type			
	Boiler Mfg.	Esys		
	Boiler Model No.			
	Boiler Serial/ID No.			
	Boiler Horsepower		Bhp	
	Burner Type	Gas, Ult Low Nox		
	Burner Mfg.	No Am		
	Burner Model No.	4231G-LE		
	Max. Firing Rate of Burner	62.500	MMBtu/hr	
	Max. Annual Heat Input	547,500.000	MMBtu/yr	
	Daily Operating schedule	24	hrs/day	
	Yearly Load factor (%)	100	%	
	Fuel Type	Natural gas		
	High Heating Value	1,050	Btu/scf	
	Sulfur Content of Fuel	23	ppmvd as H2S	5
	Nitrogen Content of Fuel	-	wt. % N	
	Boiler Classification	Commercial		
	Firing Type	Other Type		
	PM Emission Factor		lb/MMBtu	
	PM ₁₀ Emission Factor		lb/MMBtu	
	NO _x Emission Factor	0.0110	lb/MMBtu	
	SO _x Emission Factor	0.0040	lb/MMBtu	
	CO Emission Factor	0.0190	lb/MMBtu	
	ROC Emission Factor	0.0040	lb/MMBtu	
RES	ULTS	<u>lb/hr</u>	lb/day	<u>TPY</u>
	Nitrogen Oxides (as NO ₂)	0.69	16.50	3.01
	Sulfur Oxides (as SO ₂)	0.23	5.55	1.01
	PM ₁₀		9.00	1.64
	Total Suspended Particulate (PM)			1.64
	Carbon Monoxide			5.20
	Reactive Organic Compounds (ROC)			1.08
		0.23	0.00	1.00
	Hourly Heat Release	62.500	MMBtu/hr	
	Daily Heat Release	1,500.000		
	Annual Heat Release	547,500.000	-	
	Rule 342 Applicability	547.5		r
	- · + F · · · · · · · · · · · · · · · · ·			

Date: 04/16/21

Attachment: F

BOILER / STEAM GENERATOR CALCULATION WORKSHEET (ver. 6.0) DATA

Permit No.	PTO 8240-R11	
Owner/Operator	PCEC	
Facility/Lease	Orcutt Hill	
Boiler Type	Steam Generator #3	
Boiler Mfg.	Esys	
Boiler Model No.	no data	
Boiler Serial/ID No.	no data	
Boiler Horsepower	no data	Bhp
Burner Type	Gas, Ult Low NOx	
Burner Mfg.	No Am	
Burner Model No.	4231G-LE	
Max. Firing Rate of Burner	62.500	MMBtu/hr
Max. Annual Heat Input	547,500.000	MMBtu/yr
Daily Operating schedule	24	hrs/day
Yearly Load factor (%)	100	%
Fuel Type	Natural gas	
High Heating Value	1,050	Btu/scf
Sulfur Content of Fuel	23	ppmvd as H2S
Nitrogen Content of Fuel	-	wt. % N
Boiler Classification	Commercial	
Firing Type	Other Type	
PM Emission Factor	0.0060	lb/MMBtu
PM ₁₀ Emission Factor	0.0060	lb/MMBtu
NO _x Emission Factor		lb/MMBtu
SO _x Emission Factor	0.0040	lb/MMBtu
CO Emission Factor	0.0190	lb/MMBtu
ROC Emission Factor		lb/MMBtu

<u>RESULTS</u>

`

Nitrogen Oxides (as NO ₂)	0.69	16.50	3.01
Sulfur Oxides (as SO ₂)	0.23	5.55	1.01
PM ₁₀	0.38	9.00	1.64
Total Suspended Particulate (PM)	0.38	9.00	1.64
Carbon Monoxide	1.19	28.50	5.20
Reactive Organic Compounds (ROC)	0.25	5.93	1.08

lb/hr

lb/day

<u>TPY</u>

Hourly Heat Release	62.500	MMBtu/hr
Daily Heat Release	1,500.000	MMBtu/day
Annual Heat Release	547,500.000	MMBtu/yr
Rule 342 Applicability	547.5	Billion Btu/yr

10.3 IDS Tables

Table 1
Permitted Potential to Emit (PPTE)

	NOx	ROC	СО	SOx	TSP	PM2.5	
PTO 8240 – Newlove Lease (non thermal + Diatomite)							
lb/day	45.81	194.42	85.50	16.66	27.00	27.00	
tons/year	8.36	33.20	15.60	3.04	4.93	4.93	

 Table 2

 Facility Potential to Emit (FPTE)

	NOx	ROC	СО	SOx	TSP	PM _{2.5}	
PTO 8240 – Newlove Lease (non thermal + Diatomite)							
lb/day	45.81	194.42	85.50	16.66	27.00	27.00	
tons/year	8.36	33.20	15.60	3.04	4.93	4.93	

Table 3Stationary Source Emissions

	NOx	ROC	CO	SOx	TSP	PM10/2.5	
PCEC Orcutt Hill Stationary Source							
lbs/day	1762.49	3592.40	2028.28	115.60	44.77	44.77	
tons/year	245.23	169.11	217.61	16.07	6.82	6.82	

10.4 Equipment List

Thursday, May 28, 2015 Santa Barbara County Air Pollution Control District – Equipment List

PT-70/Reeval 08240 R9 / FID: 03321 Newlove Lease / SSID: 02667

A PERMITTED EQUIPMENT

DIATOMITE PROJECT

- 18 Diatomite Project
- **18.1** Storage Tanks

18.1.1 Crude Oil Storage Tank

Device ID #	109488	Device Name	Crude Oil Storage Tank
Rated Heat Input Manufacturer Model	TARSCO	Physical Size Operator ID Serial Number	2100.00 BBL T-350 3546-3
Location Note Device Description	Newlove Lease 25' dia. x 24' ht.		

18.1.2 Crude Oil Storage Tank

Device ID #	109489	Device Name	Crude Oil Storage Tank
Rated Heat Input		Physical Size	2100.00 BBL
Manufacturer	TARSCO	Operator ID	T-360
Model		Serial Number	3545-4
Location Note	Newlove Lease		
Device	25' dia. x 24' ht.		
Description			

18.1.3 Wash Tank

Device ID #	109487	Device Name	Wash Tank
Rated Heat Input		Physical Size	5480.00 BBL
Manufacturer	TARSCO	Operator ID	T-340
Model		Serial Number	3546-2
Location Note	Newlove Lease		
Device	30' dia. x 32' ht. conr	nected to the vapor recov	very system.
Description		*	

18.1.4 Wash Tank

Device ID #	109536	Device Name	Wash Tank
Rated Heat Input		Physical Size	5480.00 BBL
Manufacturer	TARSCO	Operator ID	T-640
Model		Serial Number	
Location Note	Newlove Lease		
Device	30' DIA x 32' HIGH		
Description			

18.1.5 Closed Drain Tank

<i>Device ID #</i>	113561	Device Name	Closed Drain Tank
Rated Heat Input		Physical Size	100.00 BBL
Manufacturer		Operator ID	T-690
Model		Serial Number	
Location Note	Newlove Lease		
Device	Diameter = 7 feet 2 in	nches	
Description	Height = 4 feet 8.5 in	iches	
-	Serves the water jet v	wash system and liquid p	pressure safety valves.
	Connected to vapor r	ecovery.	-

18.1.6 Produced Water Tank

Device ID #	109486	Device Name	Produced Water Tank
Rated Heat Input		Physical Size	2800.00 BBL
Manufacturer	TARSCO	Operator ID	T-330
Model		Serial Number	3546-1
Location Note	Newlove Lease		
Device	25' dia. (490.87 SF)	x 32' ht.	
Description			

18.2 Steam Generator SG-100

Device ID #	109530	Device Name	Steam Generator #1
Rated Heat Input		Physical Size	62.50 MMBtu/Hour
Manufacturer	BYIS Manuf	Operator ID	SG-100
Model		Serial Number	
Location Note	Newlove Lease		
Device	Generator design: 1	160 psig @ 564F	
Description	Burner is North Am	erican Mfg Model 4211	-24G-LE ultra low NOx
	design with a Roser	nount World Class 3000	excess O2 trim control and
	flue gas recirculation	n (FGR).	

)
)

Device ID #	109485	Device Name	Steam Generator #2
Rated Heat Input		Physical Size	62.50 MMBtu/Hour
Manufacturer		Operator ID	SG-300
Model		Serial Number	
Location Note	Newlove Lease		
Device	Generator design: 11	160 psig @ 564F	
Description	Burner is North Ame	erican Mfg Model 4211	-24G-LE ultra low NOx
	design with a Rosen	nount World Class 3000	excess O2 trim control and
	flue gas recirculation	n (FGR).	

18.4 Steam Generator SG-400

Device ID #	114798	Device Name	Steam Generator SG- 400
Rated Heat Input	62.500 MMBtu/Hour	Physical Size	
Manufacturer	Fives North American	Operator ID	SG-400
Model	NA-4213-GL	Serial Number	
Location Note			
Device	Steam Generator to gene	erate steam for oil/gas	s well injection enhancemen
Description	purposes.	C C	-

18.5 Diatomite Gas Gathering Compressor #2

Device ID #	113508	Device Name	Diatomite Gas Gathering Compressor #2
Rated Heat Input		Physical Size	60.00 Horsepower (Electric Motor)
Manufacturer		Operator ID	K-700B
Model		Serial Number	
Location Note	Newlove Lease		
Device			
Description			

18.6 Diatomite Gas Gathering Compressor #1

Device ID #	113507	Device Name	Diatomite Gas Gathering Compressor #1
Rated Heat Input		Physical Size	60.00 Horsepower (Electric Motor)
Manufacturer		Operator ID	K-700A
Model		Serial Number	
Location Note	Newlove Lease		
Device			
Description			

18.7 Booster Compressor

Device ID #	393045	Device Name	Booster Compressor
Rated Heat Input		Physical Size	
Manufacturer	Ro-Flo	Operator ID	K-105
Model	211M	Serial Number	
Location Note			
Device			
Description			

18.8 Booster Compressor

Device ID #	393044	Device Name	Booster Compressor
Rated Heat Input		Physical Size	
Manufacturer	Ro-Flo	Operator ID	K-105
Model	211M	Serial Number	
Location Note			
Device			
Description			

18.9 Vapor Recovery Inlet Separator

Device ID #	109495	Device Name	Vapor Recovery Inlet Separator
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	V-500
Model		Serial Number	
Location Note	Newlove Lease		
Device	1' DIA x 5' Shell; 1	00 psig @ 200F; part of '	VRU
Description		- · ·	

18.10 H2S Removal Vessel

Device ID #	109494	Device Name	H2S Removal Vessel
Rated Heat Input		Physical Size	
Manufacturer	PCL Ind Services	Operator ID	V-380B
Model		Serial Number	20162-02
Location Note	Newlove Lease		
Device	12' DIA x 30' Shell; 1	50 psig @ 550F	
Description	,	1 6	

18.11 H2S Removal Vessel

Device ID #	109493	Device Name	H2S Removal Vessel
Rated Heat Input		Physical Size	
Manufacturer	PCL Ind Services	Operator ID	V-380A
Model		Serial Number	20162-01
Location Note	Newlove Lease		
Device	12' DIA x 30' Shell; 1	50 psig @ 550F	
Description			

18.12 Produced Gas Knockout Vessel

Device ID #	109492	Device Name	Produced Gas Knockout Vessel
Rated Heat Input		Physical Size	
Manufacturer	PCL Ind Services	Operator ID	V-315
Model		Serial Number	20159-03
Location Note	Newlove Lease		
Device	2.5' DIA x 10.0' Shell	l; 150 psig @ 540F	
Description			

18.13 Three Phase Separator

Device ID #	109491	Device Name	Three Phase Separator
Rated Heat Input		Physical Size	
Manufacturer	PCL Ind Services	Operator ID	V-300
Model		Serial Number	20165-02
Location Note	Newlove Lease		
Device	8' DIA x 32' Shell; 15	50 psig @ 550F	
Description			

18.14 Three-Phase Separator

Device ID #	393043	Device Name	Three-Phase Separator
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	V-600
Model		Serial Number	
Location Note			
Device	8.0' dia. x 32.0 ' length		
Description	C		

18.15 Gas Scrubbing Vessel

Device ID #	115286	Device Name	Gas Scrubbing Vessel
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	V-665B
Model		Serial Number	
Location Note			
Device	- 6' by 12' seam to sear	n	
Description	- maximum operating	pressure at 150 psig an	nd 200°F

18.16 HP Relief Condensate Pump

Device ID #	109465	Device Name	HP Relief Condensate Pump
Rated Heat Input		Physical Size	5.00 Horsepower (Electric Motor)
Manufacturer	Tuthill	Operator ID	P-345
Model	GG 50	Serial Number	G15514
Location Note	Newlove Lease		
Device	38 gpm @ 60 ft TD	H, 2" line, driver RPM =	1150
Description			

18.17 Gas Scrubbing Vessel

Device ID #	115285	Device Name	Gas Scrubbing Vessel
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	V-665A
Model		Serial Number	
Location Note			
Device	- 6' by 12' seam to s	seam	
Description	- maximum operation	ng pressure at 150 psig ar	nd 200°F

18.18 Fuel Gas Scrubber

<i>Device ID #</i>	109490	Device Name	Fuel Gas Scrubber
Rated Heat Input		Physical Size	
Manufacturer	PCL Ind Services	Operator ID	V-115
Model		Serial Number	20159-01
Location Note	Newlove Lease		
Device	2' DIA x 7' Shell; 200) psig @ 200F	
Description			

18.19 Natural Gas Blending Skid

18.20 Wellheads 1-30

Device ID #	109497	Device Name	Wellheads 1-30
Rated Heat Input Manufacturer Model Location Note Device	Newlove Lease	Physical Size Operator ID Serial Number	30.00 Total Wells TBD
Description			

18.21 Wellheads 31-34

<i>Device ID #</i>	112492 De	vice Name	Wellheads 31-34
Rated Heat Input	Ph	ysical Size	4.00 Total Wells
Manufacturer	Op	erator ID	
Model	Sei	rial Number	
Location Note			
Device	These wells are not equipped	d with well cella	rs
Description			

18.22 Wellheads 35-97

<i>Device ID #</i>	393042	Device Name	Wellheads 35-97
Rated Heat Input		Physical Size	63.00
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	New device: 393042		
Description			

18.23 VRU Condensate Pump

Device ID #	109484	Device Name	VRU Condensate Pump
Rated Heat Input		Physical Size	0.50 Horsepower (Electric Motor)
Manufacturer		Operator ID	P-525B
Model		Serial Number	
Location Note	Newlove Lease		
Device	Part of VRU		
Description			

18.24 VRU Condensate Pump

Device ID #	109483	Device Name	VRU Condensate Pump
Rated Heat Input		Physical Size	0.50 Horsepower (Electric Motor)
Manufacturer		Operator ID	P-525A
Model		Serial Number	
Location Note	Newlove Lease		
Device	Part of VRU		
Description			

18.25 Vapor Compressor

Device ID #	109482	Device Name	Vapor Compressor
Rated Heat Input		Physical Size	20.00 Horsepower (Electric Motor)
Manufacturer		Operator ID	P-515B
Model		Serial Number	
Location Note	Newlove Lease		
Device	200 MSCFD @ 20p	sig; part of VRU	
Description			

18.26 Vapor Compressor

Device ID #	109481	Device Name	Vapor Compressor
Rated Heat Input		Physical Size	20.00 Horsepower (Electric Motor)
Manufacturer		Operator ID	P-515A
Model		Serial Number	
Location Note	Newlove Lease		
Device	200 MSCFD @ 20p	sig; part of VRU	
Description	•		

18.27 H2S Removal Vessel Drain Pump

Device ID #	109480	Device Name	H2S Removal Vessel Drain Pump
Rated Heat Input		Physical Size	20.00 Horsepower (Electric Motor)
Manufacturer	Goulds	Operator ID	P-385B
Model	3196STX	Serial Number	
Location Note	Newlove Lease		
Device	200 gpm @ 180 ft T	DH; 3x1-1/2-8 lines; driv	ver rpm = 3500
Description			_

18.28 Condensate Pump P-315A

Device ID #	387350	Device Name	Condensate Pump P- 315A
Rated Heat Input Manufacturer Model Location Note Device		Physical Size Operator ID Serial Number	30.00 gal/Minute P-315A
Description			

18.29 Condensate Pump P-315B

<i>Device ID #</i>	387351	Device Name	Condensate Pump P- 315B
Rated Heat Inpu Manufacturer Model Location Note Device Description	t	Physical Size Operator ID Serial Number	30.00 gal/Minute P-315B

18.30 H2S Removal Vessel Drain

Device ID #	109479	Device Name	H2S Removal Vessel Drain
Rated Heat Input		Physical Size	20.00 Horsepower (Electric Motor)
Manufacturer	Goulds	Operator ID	P-385A
Model	3196STX	Serial Number	727F462 2W2
Location Note	Newlove Lease		
Device	200 gpm @ 180 ft T	DH; 3x1-1/2-8 lines; dri	ver $rpm = 3500$
Description			_

18.31 Main Condensate Pump #1

Device ID #	113505	Device Name	Main Condensate Pump #1
Rated Heat Input		Physical Size	3.00 Horsepower (Electric Motor)
Manufacturer		Operator ID	P-702A
Model		Serial Number	
Location Note	Newlove Lease		
Device			
Description			

18.32 Fugitive Hydrocarbon Components

18.32.1 Component Leak Paths

Device ID #	114800	Device Name	Component Leak Paths
Rated Heat Input		Physical Size	15703.00 Component Leakpath
Manufacturer		Operator ID	•
Model		Serial Number	
Location Note			
Device	SG400 + fugitives		
Description			

18.32.2 Component Leak Paths

•

Device ID #	115279	Device Name	Component Leak Paths
Rated Heat Input		Physical Size	1740.00 Component Leakpath
Manufacturer		Operator ID	•
Model		Serial Number	
Location Note			
Device	These CLP's are	associated with the Gas Ble	ending Skid.
Description			C

18.32.3 Fugitive Components - Correlation Equation Method

Device ID #	109516	Device Name	Fugitive Components - Correlation Equation Method		
Rated Heat Input		Physical Size			
Manufacturer		Operator ID			
Model		Serial Number			
Location Note	Newlove Lease				
Device	Emissions calc based	on Correlation Equation	on Method; low leak BACT		
Description	component design; LDAR thresholds; monthly inspection				
	3 Compressor Seals Screened				
	3996 Connectors Screened				
	1705 Flanges Screened				
	0 Open-Ended Lines Screened				
	720 Other Screened				
	18 Pump Seals Screen	ned			
	1482 Valves Screened	1			

18.32.4 Fugitive Components

Device ID #	387285	Device Name	Fugitive Components
Rated Heat Input		Physical Size	1280.00 Component Leakpath
Manufacturer		Operator ID	
Model		Serial Number	
Location Note			
Device	Correlation Equation	Leakpaths	
Description	Gas/Light Liquid	-	
	225 Valves		
	3 PRDs		
	9 Others		
	630 Connectors		
	410 Flanges		
	3 Pump Seals		

18.33 Vapor Recovery Discharge Scrubber

Device ID #	109496	Device Name	Vapor Recovery Discharge Scrubber
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	V-505
Model		Serial Number	
Location Note	Newlove Lease		
Device	1' DIA x 5' Shell; 1	00 psig @ 200F; part of V	/RU
Description			

18.34 Heat Exchangers

•

18.34.1 Produced Gas Shell & Tube Heat Exchanger

Device ID #	109462	Device Name	Produced Gas Shell & Tube Heat Exchanger
Rated Heat Input		Physical Size	
Manufacturer	Ohmstede	Operator ID	H-305
Model		Serial Number	
Location Note	Newlove Lease		
Device			
Description			

18.34.2 VRU Compressor Discharge Heat Exchanger - Fin Fan

Device ID #	109464	Device Name	VRU Compressor Discharge Heat Exchanger - Fin Fan
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	H-510B
Model		Serial Number	
Location Note	Newlove Lease		
Device	Part of VRU		
Description			

18.34.3 VRU Inlet Heat Exchanger - Fin Fan

Device ID #	109463	Device Name	VRU Inlet Heat Exchanger - Fin Fan
Rated Heat Input		Physical Size	5.00 Horsepower (Electric Motor)
Manufacturer		Operator ID	H-510A
Model		Serial Number	
Location Note	Newlove Lease		
Device	Part of VRU		
Description			

18.34.4 Produced Oil Heat Exchanger HX-637

Device ID #	387284	Device Name	Produced Oil Heat Exchanger HX-637
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	HX-637
Model		Serial Number	
Location Note			
Device	13' 11" Height		
Description	-		

18.34.5 Produced Oil Heat Exchanger HX-636

Device ID #	387283	Device Name	Produced Oil Heat Exchanger HX-636
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	HX-636
Model		Serial Number	
Location Note			
Device	7' 11" Height		
Description	C		

18.35 Produced Gas Condenser Air Cooler HX-306

Device ID #	387282	Device Name	Produced Gas Condenser Air Cooler HX-306
Rated Heat Input		Physical Size	10.00 Horsepower (Electric Motor)
Manufacturer		Operator ID	HX-306
Model		Serial Number	
Location Note			
Device	11' 10" Height		
Description	-		

18.36 Pressure Vessel V-317

Device ID #	387281	Device Name	Pressure Vessel V-317
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	V-317
Model		Serial Number	
Location Note			
Device	5' D x 14' H		
Description			

18.37 Pressure Vessel V-316

Device ID #	387280	Device Name	Pressure Vessel V-316
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	V-316
Model		Serial Number	
Location Note			
Device	5' D x 14' H		
Description			

18.38 Main Condensate Pump #2

Device ID #	113506	Device Name	Main Condensate Pump #2
Rated Heat Input		Physical Size	3.00 Horsepower (Electric Motor)
Manufacturer		Operator ID	P-702B
Model		Serial Number	
Location Note	Newlove Lease		
Device			
Description			

18.39 Main Knockout Vessel

•

<i>Device ID #</i>	113504	Device Name	Main Knockout Vessel
Rated Heat Input		Physical Size	1.00 Installation
Manufacturer		Operator ID	V-701
Model		Serial Number	
Location Note	Newlove Lease		
Device	2 feet in diameter by	y 8 feet E/E	
Description			

18.40 Field Knockout Vessel Condensate Pump #2

Device ID #	113501	Device Name	Field Knockout Vessel Condensate Pump #2
Rated Heat Input		Physical Size	3.00 Horsepower (Electric Motor)
Manufacturer		Operator ID	P-707
Model		Serial Number	
Location Note	Newlove Lease		
Device	Serves Field Knock	Vessel #2 at Pod 1.	
Description			

18.41 Field Knockout Vessel #2

Device ID #	113500	Device Name	Field Knockout Vessel #2
Rated Heat Input		Physical Size	1.00 Installation
Manufacturer		Operator ID	V-703
Model		Serial Number	
Location Note	Newlove Lease		
Device	2 feet in diameter by	8 feet E/E. Serves Pod	1.
Description	·		

18.42 Mobile Sand Bin #1

Device ID #	113481	Device Name	Mobile Sand Bin #1
Rated Heat Input		Physical Size	
Manufacturer	Rain for Rent	Operator ID	ME-690A
Model	25 Yard Turbo	Serial Number	
	Vacuum Box		
Location Note	Newlove Lease		
Device	20 feet long by 7 fee	et wide by 5 feet deep, co	vered, vapor tight.
Description		recovery when in service	

18.43 Mobile Sand Bin #2

<i>Device ID #</i>	113482	Device Name	Mobile Sand Bin #2
Rated Heat Input		Physical Size	
Manufacturer	Rain for Rent	Operator ID	ME-690B
Model	25 Yard Turbo	Serial Number	
	Vacuum Box		
Location Note	Newlove Lease		
Device	20 feet long by 7 fee	et wide by 5 feet deep, co	overed, vapor tight.
Description	Connected to vapor	recovery when in service	2.

18.44 Sand Bin Pump #1

<i>Device ID #</i>	113483	Device Name	Sand Bin Pump #1
Rated Heat Input		Physical Size	1.00 Installation
Manufacturer		Operator ID	P691A
Model		Serial Number	
Location Note	Newlove Lease		
Device			
Description			

18.45 Sand Bin Pump #2

Device ID #	113484	Device Name	Sand Bin Pump #2
Rated Heat Input Manufacturer Model		Physical Size Operator ID Serial Number	1.00 Installation P691B
Location Note Device Description	Newlove Lease		

18.46 Progauge AWT #2

Device ID #	109680	Device Name	Progauge AWT #2
Rated Heat Input		Physical Size	
Manufacturer	Progauge	Operator ID	V-405
Model		Serial Number	
Location Note	Newlove Lease		
Device	2' dia x 3' shell; 400	psig @ 400F	
Description			

18.47 Desander #1

Device ID #	113478	Device Name	Desander #1
Rated Heat Input		Physical Size	
Manufacturer	Enerscope Systems Inc.	Operator ID	V-680
Model Location Note	ESI-0010 Newlove Lease	Serial Number	
Device Description	1300 - 2500 BPD, 63 i	inches long	

18.48 Progauge AWT #1

Device ID #	109679	Device Name	Progauge AWT #1
Rated Heat Input		Physical Size	
Manufacturer	Progauge	Operator ID	V-400
Model		Serial Number	
Location Note	Newlove Lease		
Device	2' dia x 3' shell; 400	psig @ 400F	
Description			

18.49 Desander #2

Device ID #	113479	Device Name	Desander #2
Rated Heat Input		Physical Size	
Manufacturer	Enerscope Systems Inc.	Operator ID	V-685A
Model	ESI-0015	Serial Number	
Location Note	Newlove Lease		
Device	2100 - 3700 BPD, 63	inches long	
Description		-	

18.50 Condensate Vessel - Low Point Drain

Device ID #	109678	Device Name	Condensate Vessel - Low Point Drain
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	V-310
Model		Serial Number	
Location Note	Newlove Lease		
Device	1' dia x 3' shell; atm	press	
Description		-	

18.51 Desander #3

Device ID #	113480	Device Name	Desander #3
Rated Heat Input		Physical Size	
Manufacturer	Enerscope Systems Inc.	Operator ID	V-685B
Model	ESI-0015	Serial Number	
Location Note	Newlove Lease		
Device	2100 - 3700 BPD, 63	inches long	
Description		-	

18.52 Free Gas Knockout Vessel

Device ID #	113477	Device Name	Free Gas Knockout Vessel
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	V-670
Model		Serial Number	
Location Note	Newlove Lease		
Device	7'3" dia by 20 feet s/s.		
Description			

B EXEMPT EQUIPMENT

Device ID #	109513		Device Name	Feed Water Storage Tank
Rated Heat Input			Physical Size	6850.00 BBL
Manufacturer	United Ind C	Broup	Operator ID	T-230
Model			Serial Number	150616
Part 70 Insig?	No	District R	ule Exemption:	
0		202.L.4 W	Vater Cooling Towers	/Ponds
Location Note	Newlove Lea	ase	Ū.	
Device	Part of VSE	P (water cond	itioning system); 35'	DIA x 40' HIGH
Description		× ·		

1 Feed Water Storage Tank

2 Feed Water Heat Exchanger

Device ID #	109500	Device Name	Feed Water Heat Exchanger
Rated Heat Input		Physical Size	
Manufacturer Model		Operator ID Serial Number	H-120
Part 70 Insig?	No	<i>District Rule Exemption:</i> 202.L.1 Heat Exchangers	
Location Note	Newlove L	ease	
Device Description		m Generator (water conditioning system condensate.	ystem) preheats feed

3 Intermediate Tank

Device ID #	109511		Device Name	Intermediate Tank
Rated Heat Input			Physical Size	450.00 BBL
Manufacturer	United Ind	Group	Operator ID	T-215
Model		•	Serial Number	150620
Part 70 Insig?	No	District	Rule Exemption:	
0		202.L.13	3 H2O Well/Filtration S	Sys/Reverse Osmosis
Location Note	Newlove L	ease		•
Device	Part of VS	EP (water con	ditioning system); 12'	8"DIA x 20' HIGH
Description				

4 Soft Water Heat Exchanger HX-650

<i>Device ID #</i>	387286	Device Name	Soft Water Heat Exchanger HX-650
Rated Heat Input		Physical Size	20.00 Horsepower (Electric Motor)
Manufacturer		Operator ID	HX-650
Model		Serial Number	
Part 70 Insig?	No	District Rule Exemption:	
0		202.L.1 Heat Exchangers	
Location Note		C	
Device	Not in Hydr	rocarbon Service	
Description	•		

5 Steam Sample Cooler

Device ID #	109515	Device Name	Steam Sample Cooler
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	H-102
Model		Serial Number	
Part 70 Insig?	No	District Rule Exemption:	
5		202.L.13 H2O Well/Filtration	Sys/Reverse Osmosis
Location Note	Newlove Lease		-
Device			
Description			

6 Supply Water Tank

Device ID #	109510		Device Name	Supply Water Tank		
Rated Heat Input			Physical Size	6850.00 BBL		
Manufacturer	United Ind Group		Operator ID	T-210		
Model			Serial Number	150615		
Part 70 Insig?	No	District	Rule Exemption:			
0		202.L.1	1 Aerobic Wastewater	Freatment Equipment		
Location Note	Newlove L	ease				
Device	Part of SA	C/WAC (wat	ter conditioning system)	; 35' DIA x 40' HIGH		
Description	This Devic	e No. includ	es T-280, T-290 and P-2	280		

7 Steam Sample Cooler

Device ID #	109514	Device Name	Steam Sample Cooler
Rated Heat Input		Physical Size	
Manufacturer Model		Operator ID Serial Number	H-101
Part 70 Insig?	No	<i>District Rule Exemption:</i> 202.L.13 H2O Well/Filtration Sy	/s/Reverse Osmosis
Location Note Device Description	Newlove Lease	•	

8 Reject Water Holding Tank

Device ID #	109512		Device Name	Reject Water Holding Tank			
Rated Heat Input			Physical Size	1340.00 BBL			
Manufacturer	United Ind Group		Operator ID	T-220			
Model			Serial Number	150618			
Part 70 Insig?	No	District	t Rule Exemption:				
C	202.L.13 H2O Well/Filtration Sys/Reverse Osmosi						
Location Note	Newlove	Lease					
Device	Part of SA	AC/WAC (wa	ter conditioning system)); 20' DIA x 24' HIGH			
Description							

9 Nutshell Filter #2

Device ID #	112559	Device Name	Nutshell Filter #2
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	
Model	FDB-7P	Serial Number	20045
Part 70 Insig?	No	District Rule Exemption:	
0		202.L.15 Portable Steam Clean	/Pressure Wash Equip
Location Note			
Device	Part of SAC	WAC (water conditioning system))
Description			

10 Nutshell Filter #1

Device ID #	112558	Device Name	Nutshell Filter #1
Rated Heat Input		Physical Size	
Manufacturer		Operator ID	
Model	FDB-7P	Serial Number	20173
Part 70 Insig?	No	District Rule Exemption:	
0		202.L.13 H2O Well/Filtration	Sys/Reverse Osmosis
Location Note			-
Device	Part of SAC	WAC (water conditioning system))
Description			

11 High Pressure Feed Water Pump

Device ID #	109502	Device Name	High Pressure Feed Water Pump					
Rated Heat Input		Physical Size						
Manufacturer	Wheatley	Operator ID	P-100					
Model	Q4240	Serial Number						
Part 70 Insig?	No Distric	ct Rule Exemption:						
_	202.L.	4 Water Cooling Tower	s/Ponds					
Location Note	Newlove Lease	-						
Device	Part of Steam Generate	or water conditioning sy	stem.					
Description	This Device No. inclui	ldes:						
-	P-221 A&B (SAC/WAC Feed Pumps)							
	P-222 A&B (SAC/WAC Backwash Pumps)							
	P-231 A&B (Brine Fill)							
	P-260 (Brine Transfer Pump)							
	P-261 Brine Inj. Pump)						

12 Feed Water Transfer Pump

<i>Device ID #</i>	109508	Device Name	Feed Water Transfer Pump		
Rated Heat		Physical Size	40.00 Horsepower		
Input			(Electric Motor)		
Manufacturer	Goulds	Operator ID	P-235B		
Model	3196MTX	Serial Number	727F463 1W3		
Part 70 Insig?	No	District Rule Exemption:			
C C		202.L.13 H2O Well/Filtration S	Sys/Reverse Osmosis		
Location Note	Newlove Lea		•		
Device	Part of SAC/	WAC (water conditioning system))		
Description					

13 RO Feed Cooling Fin Fan

Device ID #	109501	Device Name	RO Feed Cooling Fin Fan					
Rated Heat Input		Physical Size						
Manufacturer	GEA Rainey	Operator ID	H-245					
Model	1-1030T108	Serial Number						
Part 70 Insig?	No	District Rule Exemption:						
0		202.L.13 H2O Well/Filtration S	Sys/Reverse Osmosis					
Location Note	Newlove Lease		•					
Device	Part of SAC/W	AC (water conditioning system))					
Description	This Device No. includes:							
•	P-281 A&B (T-280 Skim Pumps)							
	P-291 A&B (Reset Pumps)							
	P-620 A&D (Heat Ex.Circ. Pumps)							
	P-300							
	P-400							

14 Feed Water Transfer Pump

Device ID #	109507	Device Name	Feed Water Transfer Pump					
Rated Heat Input		Physical Size	40.00 Horsepower (Electric Motor)					
Manufacturer	Goulds	Operator ID	P-235A					
Model	3196MTX	Serial Number	727F464 2W2					
Part 70 Insig?	No	District Rule Exemption:						
_		202.L.4 Water Cooling Towers	s/Ponds					
Location Note	Newlove Lea	se						
Device	Part of SAC/	WAC (water conditioning system))					
Description	This Device	No. includes P-212 A&B IGF feed	d pump)					
-	P-207A&B (Recirc. pump)							
	P-206 A&B (Nutshell 1&2 feed)						
	P-216 A&B (Chem. transfer to V-380B)							

10.5 Permitted Wells

`

Pacific Coast Energy Company LP

Diatomite Wells (Steam Injection)

Well Count = 97

Formatted API #	Well #	Well Status	Pool WellTypes	Section	Township	Range	Latitude	Longitude
083-00075	76	I.	OG, SC	25	09N	34W	34.83248	-120.4054382
083-00956	97	I.	OG, SC	30	09N	33W	34.83007	-120.4017796
083-22434	301	А	OG, SC	25	09N	34W	34.8258	-120.405321
083-22453	25-83D	I	OG, SC	25	09N	34W	34.83276	-120.4055239
083-22454	25-83F	I	OG, SC	25	09N	34W	34.83281	-120.4055316
083-22455	25-83E	I	OG, SC	25	09N	34W	34.83274	-120.4055117
083-22457	25-83J	I	OG, SC	25	09N	34W	34.8327	-120.4055052
083-22458	25-83M		OG, SC	25	09N	34W	34.83244	-120.4054157
083-22459	25-83N	I	OG, SC	25	09N	34W	34.83233	-120.4053855
083-22460	25-83K	I	OG, SC	25	09N	34W	34.83242	-120.4054121
083-22461	25-83L	I	OG, SC	25	09N	34W	34.83239	-120.4053932
083-22463	25-83P	I	OG, SC	25	09N	34W	34.83236	-120.4053814
083-22551	25-83S	1	OG, SC	25	09N	34W	34.83163	-120.40524
083-22552	25-83T		OG, SC	25	09N	34W	34.8316	-120.405244
083-22553	25-83U		OG, SC	25	09N	34W	34.83164	-120.405187
083-22581	209		OG, SC	25	09N	34W	34.83157	-120.4045992
083-22582	210		OG, SC	25	09N	34W	34.83122	-120.4046823
083-22583	25-83W		OG, SC	25	09N	34W	34.83151	-120.4046089
083-22585	207	A	OG, SC	25	09N	34W	34.82601	-120.4062087
083-22586	206	A	OG, SC	25	09N	34W	34.82669	-120.4044199
083-22593	211	A	OG, SC	25	09N	34W	34.8254	-120.405138
083-22596	214	A	OG, SC	25	09N	34W	34.82494	-120.4047135
083-22598	226	A	OG, SC	25	09N	34W	34.82537	-120.4051386
083-22606	216	 	OG, SC	25	09N	34W	34.8258	-120.405385
083-22607	217	A	OG, SC	25	09N	34W	34.82571	-120.4057697
083-22609	219	A	OG, SC	25	09N	34W	34.82649	-120.4043545
083-22610	220	A	OG, SC	25	09N	34W	34.82624	-120.4042984
083-22611	221	A	OG, SC	25	09N	34W	34.82619	-120.4042939
083-22612	225	A	OG, SC	25	09N	34W	34.82622	-120.4043015
083-22614	222	A	OG, SC	25	09N	34W	34.82685	-120.4050053
083-22616	224	A	OG, SC	25	09N	34W	34.82651	-120.4043559
083-22617	227	A	OG, SC	25	09N	34W	34.82692	-120.4054442
083-22618	228	Α	OG, SC	25	09N	34W	34.8269	-120.4053962
083-22619	229	A	OG, SC	25	09N	34W	34.82602	-120.4062556
083-22620	230	A	OG, SC	25	09N	34W	34.82586	-120.4064478
083-22621	231	A	OG, SC	25	09N	34W	34.82582	-120.406436
083-22622	232	1	OG, SC	25	09N	34W	34.82569	-120.4057886
083-22625	233	A	OG, SC	25	09N	34W	34.82527	-120.405073
083-22626	234	A	OG, SC	25	09N	34W	34.82523	-120.405052
083-22627	235	A	OG, SC	25	09N	34W	34.8258	-120.4063849
083-22643	236	A	OG, SC	25	09N	34W	34.82355	-120.40909
083-22668	237	A	OG, SC	25	09N	34W	34.8249	-120.40483
083-22669	238	A	OG, SC	25	09N	34W	34.82579	-120.406299
083-22670	238	A	OG, SC	25	09N	34W	34.82619	-120.4042471
			-					
083-22671	243	А	OG, SC	25	09N	34W	34.82628	-120.40432

083-22672	252	А	OG, SC	25	09N	34W	34.8273	-120.405183
083-22673	252	A	OG, SC	25	09N	34W	34.82729	-120.405183
083-22674	269	A A	OG, SC	25	09N	34W	34.82623	-120.405520
083-22675	2103	A		25	09N	34W	34.82377	-120.400208
083-22676		A	OG, SC	25	09N	34W		
	2110 2116	A	OG, SC OG, SC	25	09N		34.82382	-120.409198
083-22677						34W	34.82361	-120.409359
083-22678	2119	A	OG, SC	25	09N	34W	34.82357	-120.409168
083-22679	2123	A	OG, SC	25	09N	34W	34.82356	-120.408851
083-22683	242	A	OG, SC	25	09N	34W	34.8262	-120.404202
083-22690	244	A	OG, SC	25	09N	34W	34.82491	-120.40477
083-22698	245	A	OG, SC	25	09N	34W	34.82662	-120.404385
083-22699	247	A	OG, SC	25	09N	34W	34.82729	-120.40493
083-22700	251	Α	OG, SC	25	09N	34W	34.82732	-120.40502
083-22701	267	Α	OG, SC	25	09N	34W	34.82705	-120.40587
083-22702	268	Α	OG, SC	25	09N	34W	34.82704	-120.40581
083-22703	271	Α	OG, SC	25	09N	34W	34.82621	-120.40637
083-22704	273	А	OG, SC	25	09N	34W	34.82604	-120.40638
083-22705	274	А	OG, SC	25	09N	34W	34.82602	-120.40628
083-22707	240	А	OG, SC	25	09N	34W	34.82507	-120.40489
083-22726	248	А	OG, SC	25	09N	34W	34.82723	-120.40504
083-22727	253	А	OG, SC	25	09N	34W	34.8273	-120.40520
083-22729	261	А	OG, SC	25	09N	34W	34.82731	-120.40602
083-22730	266	А	OG, SC	25	09N	34W	34.82707	-120.40592
083-22731	275	А	OG, SC	25	09N	34W	34.82516	-120.40500
083-22732	283	А	OG, SC	25	09N	34W	34.82685	-120.40505
083-22733	250	А	OG, SC	25	09N	34W	34.82727	-120.40509
083-22734	254	А	OG, SC	25	09N	34W	34.82731	-120.40527
083-22735	257	А	OG, SC	25	09N	34W	34.82732	-120.40532
083-22736	263	А	OG, SC	25	09N	34W	34.82721	-120.40615
083-22737	264	А	OG, SC	25	09N	34W	34.82718	-120.40614
083-22738	265	А	OG, SC	25	09N	34W	34.82714	-120.40613
083-22741	2102	А	OG, SC	25	09N	34W	34.82379	-120.40894
083-22742	2107	А	OG, SC	25	09N	34W	34.82379	-120.40915
083-22743	2108	А	OG, SC	25	09N	34W	34.82379	-120.40919
083-22744	2112	А	OG, SC	25	09N	34W	34.8238	-120.40939
083-22745	2113	А	OG, SC	25	09N	34W	34.8238	-120.40943
083-22751	2115	А	OG, SC	25	09N	34W	34.82359	-120.40928
083-22752	2117	I	OG, SC	25	09N	34W	34.82359	-120.40924
083-22753	2120	1	OG, SC	25	09N	34W	34.82356	-120.40913
083-22754	2124	A	OG, SC	25	09N	34W	34.82363	-120.40875
083-22755	2125	A	OG, SC	25	09N	34W	34.82361	-120.40880
083-22456	25-83G	1	OG	25	09N	34W	34.83273	-120.405508
083-22462	25-830	· · · · · · · · · · · · · · · · · · ·	OG	25	09N	34W	34.83238	-120.405396
083-22573	401		OG	25	09N	34W	34.83307	-120.405350
083-22574	401	· · ·	OG	25	09N	34W	34.83306	-120.405863
083-22577	402 401P		OG	25	09N	34W	34.83106	-120.403803
083-22578	401P 402P	1	OG	25	09N	34W	34.83038	-120.404847
		1	OG				34.83106	-120.403132
083-22613	401P-1			25	09N	34W		
083-22706	239	A A	OG OG	25	09N 09N	34W 34W	34.82522 34.82657	-120.40505 -120.40436
002 22225						1 34 VV	1 34 0/03/	-120.40430
083-22725 083-22728	246 258	A A	OG	25	09N	34W	34.82733	-120.40537

10.6 Fee Statement

.

•

air pollution control district santa barbara county

FEE STATEMENT PT-70/Reeval No. 08240 - R12 FID: 03321 Newlove Lease / SSID: 02667

			1		1							
Device		Fee	Qty of Fee		Fee	Max or Min. Fee	Number of Same	Pro Rate	Device	Penalty	Fee	Total Fee
No.	Device Name	Schedule	Units	Unit	Units	Apply?	Devices	Factor	Fee	Fee?	Credit	per Device
386204	Fugitive Hydrocarbon Components	A1.a	1.000	85.90	Per equipment	No	1	1.000	85.90	0.00	0.00	85.90
					Per							
003042	Oil and Gas Wellheads	A1.a	78.000	85.90	equipment	No	1	1.000	6,700.20	0.00	0.00	6,700.20
002974	Crude Oil Storage Tank	A6	42.000	4.92	Per 1000 gallons	No	1	1.000	206.64	0.00	0.00	206.64
0.1700		1.5	10 4 000		Per 1000			1 0 0 0	c10.00	0.00	0.00	<i>c</i> 10.0 0
394720	Wash Tank	A6	126.000	4.92	0	No	1	1.000	619.92	0.00	0.00	619.92
109949	Wash Tank	A6	126.000	4.92	Per 1000 gallons	No	1	1.000	619.92	0.00	0.00	619.92
					Per 1000							
388303	Wash Tank	A6	126.000	4.92	8	No	1	1.000	619.92	0.00	0.00	619.92
107475	Wastewater Tank	A6	420.000	4 92	Per 1000 gallons	No	1	1.000	2,066.40	0.00	0.00	2,066.40
10/4/5	Wastewater Tank	AU	420.000	4.72	Per 1000	110	1	1.000	2,000.40	0.00	0.00	2,000.40
110332	Wastewater Tank	A6	42.000	4.92	gallons	No	1	1.000	206.64	0.00	0.00	206.64
101173	Wastewater Pit	A1.a	1.000	85.90	Per equipment	No	1	1.000	85.90	0.00	0.00	85.90
					Per					0.00		
101174	Wastewater Pit	A1.a	1.000	85.90	equipment	No	1	1.000	85.90	0.00	0.00	85.90
101175	Wastewater Pit	A1.a	1.000	85.90	Per equipment	No	1	1.000	85.90	0.00	0.00	85.90
101104	W i D'i	1	1.000	95.00	Per	N	1	1.000	95.00	0.00	0.00	95.00
101184	Wastewater Pit	A1.a	1.000	85.90	equipment Per total rated	No	1	1.000	85.90	0.00	0.00	85.90
101176	Pit Pumps	A2	7.500	44.53		No	2	1.000	667.95	0.00	0.00	667.95
101177	Spill Catch Pan	A1.a	1.000	85.90	Per equipment	No	1	1.000	85.90	0.00	0.00	85.90
101177	Spin Catch I an	ALLa	1.000	05.70	Per	110	1	1.000	05.70	0.00	0.00	05.70
101178	Wastewater Pit	A1.a	1.000	85.90	equipment	No	1	1.000	85.90	0.00	0.00	85.90
101185	Wastewater Pit	A1.a	1.000	85.90	Per equipment	No	1	1.000	85.90	0.00	0.00	85.90
					Per		-					
113871	Vacuum Truck Washout Pit #1	A1.a	1.000	85.90	equipment	No	1	1.000	85.90	0.00	0.00	85.90
113872	Vacuum Truck Washout Pit #2	A1.a	1.000	85.90	Per equipment	No	1	1.000	85.90	0.00	0.00	85.90
					Per total rated							
101181	Charge Pump	A2	10.000	44.53	hp	No	1	1.000	445.30	0.00	0.00	445.30

Г					Per total rated							
101182	Sample Pump	A2	1.500	44.53		Min	1	1.000	85.34	0.00	0.00	85.34
					Per total rated							
101183	Shipping Pump	A2	10.000	44.53	hp	No	1	1.000	445.30	0.00	0.00	445.30
101186	Weigh Meters	A1.a	1.000	85.00	Per equipment	No	8	1.000	687.20	0.00	0.00	687.20
101180		A1.a	1.000	83.90	Per	INO	0	1.000	087.20	0.00	0.00	087.20
101187	Gas/Liquid Separators	A1.a	1.000	85.90	equipment	No	4	1.000	343.60	0.00	0.00	343.60
	~ ~				Per							
114716	Gas/Liquid Separator	A1.a	1.000	85.90	equipment Per	No	1	1.000	85.90	0.00	0.00	85.90
101189	Blowdown Vessel	A1.a	1.000	85.90	equipment	No	1	1.000	85.90	0.00	0.00	85.90
					Per							
101190	Blowdown Vessel Blowcase	A1.a	1.000	85.90	equipment	No	1	1.000	85.90	0.00	0.00	85.90
107854	Condensate Storage Vessel	A1.a	1.000	85.90	Per equipment	No	1	1.000	85.90	0.00	0.00	85.90
10/834	Condensate Storage Vesser	Al.a	1.000	83.90	Per total rated	INO	1	1.000	83.90	0.00	0.00	83.90
112557	Vapor Recovery System	A2	15.000	44.53	hp	No	1	1.000	667.95	0.00	0.00	667.95
					Per							
112817	Automatic Well Tester	A1.a	1.000	85.90	equipment	No	1	1.000	85.90	0.00	0.00	85.90
109470	Oil Tank Battery Sump Pump	A2	2.000	44.53	Per total rated hp	No	1	1.000	89.06	0.00	0.00	89.06
107470		AL	2.000	44.55	Per total rated	110	1	1.000	87.00	0.00	0.00	87.00
109471	Produced Water Transfer Pump	A2	20.000	44.53	hp	No	1	1.000	890.60	0.00	0.00	890.60
					Per total rated							
109472	LACT Charge Pump	A2	20.000	44.53	hp Per total rated	No	1	1.000	890.60	0.00	0.00	890.60
109473	Sample Pump	A2	1.500	44.53		Min	1	1.000	85.34	0.00	0.00	85.34
					Per total rated							
109474	Produced Water Transfer Pump	A2	20.000	44.53		No	1	1.000	890.60	0.00	0.00	890.60
100475		10	20.000	14.52	Per total rated	N	1	1.000	000 (0	0.00	0.00	200 (0
109475	LACT Charge Pump	A2	20.000	44.53	np Per total rated	No	1	1.000	890.60	0.00	0.00	890.60
109476	Reject Tank Pump	A2	10.000	44.53		No	1	1.000	445.30	0.00	0.00	445.30
	· ·				Per total rated							
109477	Reject Tank Pump	A2	10.000	44.53	hp	No	1	1.000	445.30	0.00	0.00	445.30
100478	Oil Bon Droin Burne	A2	1 500	11 52	Per total rated	Min	1	1.000	85.34	0.00	0.00	95 24
109478	Oil Pan Drain Pump	A2	1.500	44.53	hp Per	Min	1	1.000	85.34	0.00	0.00	85.34
113142	Hydrogen Sulfide Scrubber	A1.a	1.000	85.90	equipment	No	1	1.000	85.90	0.00	0.00	85.90
					Per							
113485	Crude Oil Loading Rack	A1.a	1.000	85.90	equipment	No	1	1.000	85.90	0.00	0.00	85.90
386203	Vapor Recovery Unit	A2	15.000	44.53	Per total rated	No	1	1.000	667.95	0.00	0.00	667.95
380203		AZ	15.000	44.33	np Per 1000	No	1	1.000	007.95	0.00	0.00	007.95
109488	Crude Oil Storage Tank	A6	88.200	4.92	gallons	No	1	1.000	433.94	0.00	0.00	433.94
					Per 1000							
109489	Crude Oil Storage Tank	A6	88.200	4.92	gallons	No	1	1.000	433.94	0.00	0.00	433.94

r		1			-							1
109487	Wash Tank	A6	230.000	4.92	Per 1000 gallons	No	1	1.000	1,131.60	0.00	0.00	1,131.60
					Per 1000				,			
109536	Wash Tank	A6	230.000	4.92	gallons Per 1000	No	1	1.000	1,131.60	0.00	0.00	1,131.60
113561	Closed Drain Tank	A6	4.200	4.92		Min	1	1.000	85.34	0.00	0.00	85.34
					Per 1000							
109486	Produced Water Tank	A6	117.600	4.92	0	No	1	1.000	578.59	0.00	0.00	578.59
109530	Steam Generator SG-100	A3	62.500	644.42	Per 1 million Btu input	Max	1	1.000	8,622.52	0.00	0.00	8,622.52
					Per 1 million							
109485	Steam Generator SG-300	A3	62.500	644.42	Btu input Per 1 million	Max	1	1.000	8,622.52	0.00	0.00	8,622.52
114798	Steam Generator SG-400	A3	62.500	644.42		Max	1	1.000	8,622.52	0.00	0.00	8,622.52
112500			10.000		Per total rated			1 0 0 0		0.00	0.00	115.00
113508	Diatomite Gas Gathering Compressor #2	A2	10.000	44.53	hp Per total rated	No	1	1.000	445.30	0.00	0.00	445.30
113507	Diatomite Gas Gathering Compressor #1	A2	60.000	44.53	hp	No	1	1.000	2,671.80	0.00	0.00	2,671.80
2020.15			1 000	07.00	Per			1 0 0 0	05.00	0.00	0.00	05.00
393045	Booster Compressor	A1.a	1.000	85.90	equipment Per	No	1	1.000	85.90	0.00	0.00	85.90
393044	Booster Compressor	A1.a	1.000	85.90		No	1	1.000	85.90	0.00	0.00	85.90
100405	Varian Deservory, Inlet Semanator	A1 a	1 000	85 00	Per	No	1	1.000	85.00	0.00	0.00	85.00
109495	Vapor Recovery Inlet Separator	A1.a	1.000	85.90	equipment Per	No	1	1.000	85.90	0.00	0.00	85.90
109494	H2S Removal Vessel	A1.a	1.000	85.90	equipment	No	1	1.000	85.90	0.00	0.00	85.90
109493	H2S Removal Vessel	A1.a	1.000	85.90	Per	No	1	1.000	85.90	0.00	0.00	85.90
109493	H25 Kemoval vessel	A1.a	1.000	83.90	equipment Per	INO	1	1.000	63.90	0.00	0.00	83.90
109492	Produced Gas Knockout Vessel	A1.a	1.000	85.90	equipment	No	1	1.000	85.90	0.00	0.00	85.90
100401	Thuse Dhose Concreten	A1 a	1.000	85 00	Per	No	1	1.000	85.00	0.00	0.00	85.00
109491	Three Phase Separator	A1.a	1.000	85.90	equipment Per	No	1	1.000	85.90	0.00	0.00	85.90
393043	Three-Phase Separator	A1.a	1.000	85.90		No	1	1.000	85.90	0.00	0.00	85.90
115296	Cas Samphing Variat	41-	1.000	95.00	Per	N-	1	1.000	95.00	0.00	0.00	85.00
115286	Gas Scrubbing Vessel	A1.a	1.000	85.90	equipment Per total rated	No	1	1.000	85.90	0.00	0.00	85.90
109465	HP Relief Condensate Pump	A2	5.000	44.53	hp	No	1	1.000	222.65	0.00	0.00	222.65
115295	Cas Samuking Vassal	A1 a	1.000	85 00	Per	No	1	1.000	95.00	0.00	0.00	95.00
115285	Gas Scrubbing Vessel	A1.a	1.000	85.90	equipment Per	No	1	1.000	85.90	0.00	0.00	85.90
109490	Fuel Gas Scrubber	A1.a	1.000	85.90	equipment	No	1	1.000	85.90	0.00	0.00	85.90
109497	Wellheads 1-30	A1.a	30.000	85.90	Per equipment	No	1	1.000	2,577.00	0.00	0.00	2,577.00
107477		/11.u	50.000	05.70	Per	110	1	1.000	2,377.00	0.00	0.00	2,577.00
112492	Wellheads 31-34	A1.a	4.000	85.90		No	1	1.000	343.60	0.00	0.00	343.60
393042	Wellheads 35-97	A1.a	63.000	85.90	Per equipment	No	1	1.000	5,411.70	0.00	0.00	5,411.70
575072	11 cimoudo 55 71	111.4	05.000	05.70	equipment	110	1	1.000	5,411.70	0.00	0.00	3,411.70

1	1		I I		D 1 . 1							
109484	VRU Condensate Pump	A2	0.500	44.53	Per total rated hp	Min	1	1.000	85.34	0.00	0.00	85.34
					Per total rated							
109483	VRU Condensate Pump	A2	0.500	44.53	hp Per total rated	Min	1	1.000	85.34	0.00	0.00	85.34
109482	Vapor Compressor	A2	20.000	44.53		No	1	1.000	890.60	0.00	0.00	890.60
					Per total rated							
109481	Vapor Compressor	A2	20.000	44.53		No	1	1.000	890.60	0.00	0.00	890.60
109480	H2S Removal Vessel Drain Pump	A2	20.000	44.53	Per total rated hp	No	1	1.000	890.60	0.00	0.00	890.60
387350	Condensate Pump P-315A	A2	5.000	44.53	Per total rated hp	No	1	1.000	222.65	0.00	0.00	222.65
387351	Condensate Pump P-315B	A2	5.000	44.53	Per total rated hp	No	1	1.000	222.65	0.00	0.00	222.65
109479	H2S Removal Vessel Drain	A2	20.000	44.53	Per total rated hp	No	1	1.000	890.60	0.00	0.00	890.60
113505	Main Condensate Pump #1	A2	3.000	44.53	Per total rated hp	No	1	1.000	133.59	0.00	0.00	133.59
114800	Component Leak Paths	A1.a	1.000	85.90	Per equipment	No	1	1.000	85.90	0.00	0.00	85.90
109516	Fugitive Components - Correlation Equation Method	A1.a	1.000	85.90	Per equipment	No	1	1.000	85.90	0.00	0.00	85.90
387285	Fugitive Components	A1.a	1.000	85.90	Per equipment	No	1	1.000	85.90	0.00	0.00	85.90
109496	Vapor Recovery Discharge Scrubber	A1.a	1.000	85.90	Per equipment	No	1	1.000	85.90	0.00	0.00	85.90
109462	Produced Gas Shell & Tube Heat Exchanger	A1.a	1.000	85.90	Per equipment	No	1	1.000	85.90	0.00	0.00	85.90
109464	VRU Compressor Discharge Heat Exchanger - Fin Fan	A1.a	1.000	85.90	Per equipment	No	1	1.000	85.90	0.00	0.00	85.90
109404		A1.d	1.000	65.90	Per total rated	INU	1	1.000	63.90	0.00	0.00	85.90
109463	VRU Inlet Heat Exchanger - Fin Fan	A2	5.000	44.53	hp	No	1	1.000	222.65	0.00	0.00	222.65
207204	Decision of Old Hard Englisher and HV (27	41 -	1 000	95.00	Per	N-	1	1.000	95.00	0.00	0.00	95.00
387284	Produced Oil Heat Exchanger HX-637	A1.a	1.000	85.90	equipment Per	No	1	1.000	85.90	0.00	0.00	85.90
387283	Produced Oil Heat Exchanger HX-636	A1.a	1.000	85.90	equipment	No	1	1.000	85.90	0.00	0.00	85.90
					Per total rated							
387282	Produced Gas Condenser Air Cooler HX-306	A2	10.000	44.53	hp Per	No	1	1.000	445.30	0.00	0.00	445.30
387281	Pressure Vessel V-317	A1.a	1.000	85.90	equipment	No	1	1.000	85.90	0.00	0.00	85.90
387280	Pressure Vessel V-316	A1.a	1.000	85.90	Per equipment	No	1	1.000	85.90	0.00	0.00	85.90
113506	Main Condensate Pump #2	A2	3.000	44.53		No	1	1.000	133.59	0.00	0.00	133.59
113504	Main Knockout Vessel	A1.a	1.000	85.90	Per equipment	No	1	1.000	85.90	0.00	0.00	85.90
113501	Field Knockout Vessel Condensate Pump #2	A2	3.000	44.53	Per total rated hp	No	1	1.000	133.59	0.00	0.00	133.59

					Per							
113500	Field Knockout Vessel #2	A1.a	1.000	85.90	equipment	No	1	1.000	85.90	0.00	0.00	85.90
					Per							
113481	Mobile Sand Bin #1	A1.a	1.000		equipment	No	1	1.000	85.90	0.00	0.00	85.90
					Per							
113482	Mobile Sand Bin #2	A1.a	1.000	85.90	equipment	No	1	1.000	85.90	0.00	0.00	85.90
112402	C 1.D' D #1	. 1	1 000	05.00	Per	N	1	1 000	05.00	0.00	0.00	95.00
113483	Sand Bin Pump #1	A1.a	1.000		equipment Per	No	1	1.000	85.90	0.00	0.00	85.90
113484	Sand Bin Pump #2	A1.a	1.000		equipment	No	1	1.000	85.90	0.00	0.00	85.90
113464	Sand Bin I unip πz	A1.d	1.000		Per	NU	1	1.000	85.90	0.00	0.00	85.90
109680	Progauge AWT #2	A1.a	1.000		equipment	No	1	1.000	85.90	0.00	0.00	85.90
					Per							
113478	Desander #1	A1.a	1.000	85.90	equipment	No	1	1.000	85.90	0.00	0.00	85.90
					Per							
109679	Progauge AWT #1	A1.a	1.000		equipment	No	1	1.000	85.90	0.00	0.00	85.90
					Per							
113479	Desander #2	A1.a	1.000		equipment	No	1	1.000	85.90	0.00	0.00	85.90
100670		. 1	1.000		Per	N	1	1 000	95.00	0.00	0.00	95.00
109678	Condensate Vessel - Low Point Drain	A1.a	1.000		equipment Per	No	1	1.000	85.90	0.00	0.00	85.90
113480	Desander #3	A1.a	1.000		equipment	No	1	1.000	85.90	0.00	0.00	85.90
115-00		A1.a	1.000		Per	110	1	1.000	05.90	0.00	0.00	05.90
113477	Free Gas Knockout Vessel	A1.a	1.000		equipment	No	1	1.000	85.90	0.00	0.00	85.90
	Device Fee Sub-Totals =								\$70,725.60	\$0.00	\$0.00	
	Device Fee Total =											\$70,725.60

Permit Fee

Fee Based on Devices

\$70,725.60

Fee Statement Grand Total = \$70,725

Notes:

•

(1) Fee Schedule Items are listed in District Rule 210, Fee Schedule "A".

(2) The term "Units" refers to the unit of measure defined in the Fee Schedule.

10.7 Comments on the Draft Permit

GENERAL COMMENTS

1. It is necessary to confirm that if the new permits are issued in June 2024, the required reporting for the Semi-Annual report (January - June 2024) will be based on the current permits issued in 2021, not the newly issued re-evals.

District Response: This is correct.

2. Please update Mr. Phil Brown's title from Vice President of Operations to Chief Operation Officer.

District Response: This change has been made.

3. Discussion of the stationary Source under Figure 1.1, it is stated that Careaga Lease was purchased in 2024 where in fact it was purchased and transferred in May 2022.

District Response: This change has been made.

4. Why has Condition A.2. Emergency Provisions been revoked?

District Response: EPA has instructed the District to remove emergency affirmative defense provisions from all title V permits. On July 12, 2023, the U.S. Environmental Protection Agency (EPA) removed the emergency affirmative defense provisions from Clean Air Act (CAA) operating permit program (title V) regulations. These provisions are found in EPA's regulations under title V of the CAA, located at 40 CFR 70.6(g) (applicable to state/local/tribal permitting authorities) and 71.6(g) (applicable when EPA is the permitting authority). See the fact sheet from EPA here: https://www.epa.gov/system/files/documents/2023-07/Fact%20Sheet%20-%20Affirmative%20Defense%20Final%20Rule.pdf.

5. Every lease at Orcutt Hill is routinely inspected annually, the draft permits state that only one inspection has been conducted 2021. This should be updated.

District Response: This lease is not consistently inspected on an annual basis. The date of the last inspection since issuance of the prior permit renewal is more appropriate. No change made.

SPECIFIC COMMENTS

None.